Alec Lindman I Feb. 28th 2024 NuMass Workshop I University of Genoa

URBO

Atomic Tritium in Project 8

JOHANNES GUTENBERG UNIVERSITÄT MAINZ JGU

Atoms: Why Bother?

High precision (sub-eV effect at 18.6 keV)

High statistics (n⁻⁴ scaling)

Control of systematics (enables requisite energy resolution; reduces background effects)

The Ideal Experiment

- High precision
 - eV resolution to 32 keV
- High statistics
 - Scales with volume
- Control of systematics:
 - Compatible with atomic tritium (10-30x more sensitive than T₂ experiment)
 - Inherently low background

How?

- Trap T atoms in a magnetic minimum, augmented with gravity
 - Must be compatible with CRES
 - See Juliana S.'s talk (9:00 Wed.)
- Continuously replenish the trapped population
 - Provide these cold atoms with an external source and cooling beam line

Atom Loss Rate

- Atoms can escape in many ways
- Fastest loss is conversion to anti-trapped states by spin exchange collisions
 - Mitigated by lower absolute field
- This and other losses under study with calculations and simulations
 - Future target of measurements, including with Li
 - See Ben J.'s talk (11:50 Thu.)

Figure 6.13: Partial lifetimes (as logarithms for the 325-MHz cavity in atomic mode)

Atomic Flux

- In the trap: trapped population * lifetime = replacement rate
 - Replacement rate / cooling efficiency = required source output
- Present goal at source
 ~ 10¹⁹ hot atoms/s

Atom Trapping

Storing Tritium Atoms

Tritium atoms have a nonzero magnetic moment, and can be trapped in a magnetic minimum

A quadrupole with closed ends forms a simple trap; we will use a higher-order multipole

This provides a large volume, plus a uniform central region for precise CRES measurements

See 10.1109/TASC. 2020.2974173 and 10.1109/TASC. 2020.2985675

Atom Trap Geometry Optimization

- Choose a realistic conductor
 - Baseline: NbTi (4 K, 200 A/mm²)
- Simulate 2D magnetic field
- Evaluate for compatibility with CRES

[200 A/mm2 * 5 mm dia:1]

Atom Cooling

Cooling Goal

- Remove energy (required)
- Preserve particle number (nice to have)

Cooling on Surfaces

- Surface accommodation is good at cooling, but can cause atoms to recombine
- Plan: many bounces on a low-recombination surface, one on a colder high-recombination surface

Cooling on Surfaces

- Evaporation-in-motion cools the transverse temperature
- Bending the guide converts forward momentum to transverse, which can be evaporated; this slows the beam
- Many options: spiral, sinusoidal, or pulsed guide shape with angled or off-center injection
- See Ben J.'s talk (11:50 Thu.)

Cooling vs. Slowing

Who?

- Project 8 has many members and external collaborators working on atomic development
 - Univ. of Washington: accommodator and time-of-flight tests
 - Indiana Univ. Bloomington: ECR atom source
 - Univ. of Texas Arlington: test beam production and laser thermometry with lithium **Ben J.'s talk (11:50 Thu.)**
 - Tritium Laboratory Karlsruhe: building a parallel test stand for tritium validation
 - Johannes Gutenberg Univ. Mainz: high-flow atom source measurements This talk
- Only possible thanks to many others working on the rest of Project 8 Juliana S.'s talk (9:00 Wed.)

JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

High-Flow Atomic Tritium

- Can't use glass RF/microwave crackers or Teflon tubing
- Need all-metal atom source
- Exist in the literature and commercially, but only at well below the flow we need
- Literature models fail at high flows

nttps://www.esa.int/ESA_Multimedia/Images/2024/01/Micro-world_within_atomic_clock

Thermal Cracker

Plateau at 100% dissociation: $\alpha = 1$

2018-02 Test Stand: Atomic Ζ Mai

Intermediate Results

- We see an atom signal
 - But with low SNR
- What can we change?

	0 0475 -	
$\widehat{}$	0.0475 -	
z = z/c	0.0450 -	
T)/(U	0.0425 -	
= z/w	0.0400 -	
Katio	0.0375 -	
sure	0.0350 -	1
Pres	0.0325 -	
artial	0.0300 -	
_		
		$\sim - \sim$

Atom to Molecule Ratio vs. Temperature

Mainz Atomic Test Stand: 2020

Selectively Detecting Atoms

Typical Electron Energy H2 from H2 from H from source H from source background source Ionization Ionization electrons electrons (70 eV) (15 eV) H2+ H2+ M2 Det. M1 Det. M1 Det. 5

Solution: employ a detector that can unambiguously count H atoms from the beam →

Symmetry

- Gas loads raise local pressures
- Skimmers create pressure drops
- Doesn't matter
 where gas comes
 from
- Pumping problem is symmetric top and bottom

Normalize: Pressure (mbar)

🔽 🔽 Log Y

Colorblind mode Change linewidth: 2 -> Apply linewidth

Profiles can only be used on rectangular facets.

Identify profiles in geometry

-> Plot expression

Select plotted facets

Dismiss

_
ō

2022 Test Stand: inz Atomic Ma

Atom Source Modification

Low efficiency at high flow: gas-gas collisions prevent some molecules from touching the hot capillary wall

A bundle of tungsten wires forces more gas-surface collisions (higher Knudsen number); should boost efficiency at high flow

Stuffed

Open

Stuffed

1 mm

Measurement Types

- Atoms: increase with temperature, fit plateau and extract alpha
 - Also: use H and H₂ count rates
- Molecules: disappear with temperature, convert missing molecules to resulting atoms
- Wire detector: measure power of atoms recombining on wire

- SNR much higher than previous versions
- Allows clear analysis at the flows that Project 8 needs

Data: 2023-06-07T2306 DLS-10: 17.5 [eV] e⁻ Fit: P_{eq}=2.212e-03, A=7.581e+01, c=1.231

Hydrogen Flow [sccm]

HABS/Modified HABS Atom Flux: 2230 [K]

Hydrogen Flow [sccm]

High-Flux Atomic Source

- The source produces
 2e18 H/s with a 1 mm
 dia. capillary
- Wire stuffing makes the output a linear function of capillary area; a 2.5 mm dia. capillary will make 1e19 H/s
- We have a proven design for the first step in Project 8's full-scale atomic apparatus

Project 8:

HOW DO YOU FIT INTO THE ATOMIC FUTURE?

