Graphene as a substrate for tritium: hydrogenation and transmission

Alice Apponi

Dipartimento di Scienze, Università degli Studi di Roma Tre and INFN Sezione di Roma Tre

28.02.2024 - NuMass 2024, University of Genova

Tritiated C-nanostructures as PTOLEMY target

PTOLEMY experiment:

- Tritium in a solid-state target
- Tritium difficult to handle but same chemical properties of hydrogen

Characterisation of hydrogenated graphene nanostructures

Measure the transmission through graphene of electrons

We can measure electron transmission < 1 keV

A lot of physics to learn and of possible applications:

- Only a few experiments below 1 keV
- Discussion still open
- Integration of graphene in MPGD (transparency to electrons and impermeability to atoms)

Electron Transmission measurement:

- Electron gun in our lab
- Electrons up to 900 eV
- Planning to extend energy up to 18 keV

Graphene hydrogenation: experimental footprints

Hydrogen bonding to graphene:

- C bonds changes from sp² to sp³
- Band gap opening
- Most stable CH morphologies 1-side and 2-side

Nano Lett. 2022, 22, 2971–2977. doi: 10.1021/acs.nanolett.2c00162

Hydrogenation of suspended graphene as a starting point to better understand

Alice Apponi - 28.02.2024

Nanoporous graphene hydrogenation seems to realize in 2-side mono- and bi- layer structures

> Betti, M.G. et al., Nano Letters (2022), https://doi.org/10.1021/acs.nanolett.2c00162

Graphene growth and transfer on metallic grid

Monolayer graphene on nickel grid:

- ✤ G2000HAN Ted Pella Inc.
- Hole width 8 μ m

Nominal geometrical transmission 41%

 $PMMA = Poly-methyl-methacrylate (C_5O_2H_8)_n$

Full coverage good quality graphene

Micro-Raman maps:

- Full coverage achieved
- Few spots without graphene X

From typical spectrum low D peak, prominent G and 2D peaks

Good quality!

The LASEC experimental chamber

- Al K α X-ray source:
- ✤ hv = 1486.7 eV
- Monochromatized beam
- \clubsuit XPS resolution = 0.46 eV

Custom-made monochromatic electron gun:

Continuous electron beam

Tuneable energy 30 - 900 eV

rightarrow Resolution = 45 meV

He discharge lamp:

* Spot diameter 300 μ m

XPS reveals high contamination

units] Intensity [arb.

High temperature annealing: good quality graphene

550°C annealing in vacuum

C 1s spectrum reveals a good quality graphene:
✤ Purely sp² line-shape

Alice Apponi - 28.02.2024

Э:

Intensity [arb. units]

NuMass 2024

From insulator to π -plasmon excitation

Alice Apponi - 28.02.2024

Focus on π -plasmon:

Collective excitation associated sp² domains (> 5 nm)

Footprint of good quality!

EELS on monolayer: suspended graphene footprint

Monolayer graphene			
Component	Energy loss [eV]	Area	FWHM [eV]
π_1 -plasmon	6.9	143	2.3
π_2 -plasmon	5.9	87	1.7

High temperature annealing cleans...but damages

550°C annaling removes PMMA

Alice Apponi - 28.02.2024

but damages graphene

Damages probably caused by strain due to different thermal expansion coefficients of Ni and Graphene

PER LE NANDTECNOLOGIE

NuMass 2024

Transmission measurement: average on several grid holes

13

Alice Apponi - 28.02.2024

Dimension outline:

- Grid effective diameter 2 mm
- Grid hole width 8 μ m
- Beam size ~ 0.5 mm

NuMass 2024

Evaluation of graphene coverage to correct transmission

Software generates histogram based on pixels grey level

Evaluate graphene coverage and geometrical transmission

Alice Apponi - 28.02.2024

Graphene coverage

- $(38 \pm 1)\%$
- ✤ Sample B (42 ± 1)%

Electron current measured with a Faraday cup

- For each step, current measured as a function of the energy within 30-900 eV
- Check stability with current measurement before and after

Graphene transmission: coverage correction

 I_S = measured current

*I*₀

 T_{grid} = grid geometrical transmission

 $I_0 \cdot T_{grid} \cdot T_G$

 $I_0 \cdot T_{grid}$

 T_G = graphene transmission

a = graphene coverage

Let's try to hydrogenate graphene on grid

Atomic hydrogen source:

- Hot tungsten capillary
- ✤ H₂ thermal cracking into H

Graphene on grid hydrogenation:

- Flat suspended graphene regions
- Controlled number of layers (possibly 1)
- 2D material! No "in-depth" hydrogenation issues

Nanoporous graphene hydrogenation M.G. et al., Nano Letters (2022), https://doi.org/10.1021/acs.nanolett.2c00162

Nano Lett. 2022, 22, 2971-2977. doi: 10.1021/acs.nanolett.2c00162

Two graphene on TEM samples from same growth

 $10 \text{ kL} = 3.6 \cdot 10^{-6} \text{ mbar} \cdot \text{hour}$

Carbon hybridization changing from sp² to sp³

The more is sp³, the higher will be H-uptake

Sample A result:

• Start with $\sim 13\%$ sp³

✤ 59% sp³ saturation after 320 kL dose

Alice Apponi - 28.02.2024

Sample B result:

✤ Start with ~42% sp³

100% sp³ saturation after 260 kL dose

NuMass 2024

~6.2 eV band gap measured with EELS

Hydrogenated graphene:

- sp² to sp³ distortion
- Band gap opening
- Electronic transition onset $\propto (E E_g)^{1/2}$ for direct gap semicondutors
- EELS measurement ² and fit with a straight line
- With this analysis $E_g \sim 6.2 \text{ eV}$ for both samples

HANDLE WITH CARE:

Background

Valence band to understand CH bonding

How many sides?

- C 1s not an unambiguous marker
- UPS: valence band features and bands dispersion

Alice Apponi - 28.02.2024

Betti, M.G. et al., Nano Letters (2022), https://doi.org/10.1021/acs.nanolett.2c00162

22

Result compatible with 1 side hydrogenation

To Conclude

Transmission through graphene

Spectrosopy on graphene

> Transmission of electrons measured in an extended energy range (30 - 900 eV)

550 °C annealing breaks graphene

C 1s and π -plasmon: evidence of purely sp² suspended graphene

Extend energy range up to 18 keV

Non-damaging cleaning

Alice Apponi - 28.02.2024

Hydrogenation of graphene

Monolayer graphene: saturation depends on initial sp²/sp³ ratio

Deeper understanding (H-uptake, band gap, CH bonding)

The PTOLEMY Collaboration

and

Alessandro Ruocco, Università Roma Tre and INFN Roma Tre Daniele Paoloni, Università Roma Tre and INFN Roma Tre Narcis Silviu Blaj, Università Roma Tre Orlando Castellano, Università Roma Tre

Camilla Coletti, IIT Pisa Domenica Convertino, IIT Pisa Neeraj Mishra, IIT Pisa

Mauro Iodice, INFN RomaTre Franco Frasconi, INFN Pisa Federico Pilo, INFN Pisa Ilaria Rago, INFN Roma

Gianluca Cavoto, Sapienza Università and INFN Roma Carlo Mariani, Sapienza Università

Giovanni De Bellis, Sapienza Università and CNIS Alice Apponi - 28.02.2024

INFN

Istituto Nazionale di Fisica Nucleare

ISTITUTO ITALIANO DI TECNOLOGIA GRAPHENE LABS

Looking for the Critical Temperature

- Test sample (a *bad* one)
- Steps increasing annealing temperature
- SEM at each step

Looking for the Critical Temperature

- Test sample (a *bad* one)
- Steps increasing annealing temperature
- SEM at each step
- Nothing happens

Looking for the Critical Temperature

- Test sample (a bad one)
- Steps increasing annealing temperature
- SEM at each step
- Nothing happens

400 °C Is The Critical Temperature

- Test sample (a *bad* one)
- Steps increasing annealing temperature
- SEM at each step
- Nothing happens up to 400 °C

Evaluate Coverage and Correct Transmission Measurements

- Map the sample with fixed SEM parameters
- Evaluate actual coverage and geometrical transmission
- Correct the transmission

Alice Apponi - 28.02.2024

31

Careful Comparison: Experiments May Not Be Compatible

32

Alice Apponi - 28.02.2024

NuMass 2024

Which Is the Nature of Transmitted Electrons?

Primary electrons

Scattered Electrons Contribution in the Order of 10%

- Measure current polarising (or not) internal CUP
- Current variation due to scattered electrons refocusing
- **⊥**V_{source} Take into account accepted solid angle
 - Scattered electrons contribution of 11% for $E_{k} = 30 \text{ eV}$

Transmission Outlook: Total Cross-Section Measurement

For the total cross-section evaluation:

• σ_{tot} = total cross-section

All and only the non-scattered electrons I(E)should be measured

$$I(E) = I_0 e^{-\frac{d}{\lambda_{EAL}}}$$

Which thickness d must be used for ML graphene?

Twice the radius of covalent bond: 2.48 Å

The attenuation length obtained in this way is affected by the arbitrariness of the thickness choice

Alice Apponi - 28.02.2024

 $I(E) = I_0 e^{-n_G \sigma_{tot}(E)}$

Where:

- n_G is the surface density of the carbon atom in graphene
- σ_{tot} is the total cross section

A correct measurement of the non scattered electrons I(E) allows to obtain the total cross section

Alice Apponi - 28.02.2024

unit)

Intensity (arb.

High Temperature Annealing Cleans...

Full covered, few spots no graphene but PMMA contamination

High Temperature Annealing Cleans...

Full covered, few spots no graphene

but PMMA contamination

550°C annealing

units] Intensity [arb.

Total C 1s Area

Quenching of π -Plasmon: Ni Losses Is What's Left

Sample B:

* π -plasmon ~ completely quenched

 \clubsuit Ni has losses at ~6 eV and ~3.5 eV

* π -plasmon almost quenched despite 59% sp³ saturation

2

0

Quenching of π -Plasmon: Ni Losses Is What's Left

Sample B:

* π -plasmon ~ completely quenched

 \clubsuit Ni has losses at ~6 eV and ~3.5 eV

* π -plasmon almost quenched despite 59% sp³ saturation

2

Hydrogenation of NPG: Different Depth Sensitivity

Alice Apponi - 28.02.2024

Quenching due to sp³ changing

45

NuMass 2024

We Reached the 64% Saturation

XPS result:

Decrease of sp²

Exponential increase of sp³

✤ 64% saturation seems to be ~reached

~6.2 eV Band Gap Measured With EELS

Hydrogenated graphene:

- sp² to sp³ distortion
- Band gap opening
- Electronic transition onset $\propto (E E_g)^{1/2}$ for direct gap semicondutors
- EELS measurement ² and fit with a straight line
- With this analysis $E_g = 6.2 \text{ eV}$

Background

Excitons

Valence Band to Understand CH Bonding

How many sides?

- C 1s not an unambiguous marker
- UPS: valence band features and angular resolution

Alice Apponi - 28.02.2E²4 E_F [eV]

Betti, M.G. et al., Nano Letters (2022), https://doi.org/10.1021/acs.nanolett.2c00162 48

enching of π -plasmon: EELS footprint of hydrogenation 260 45 0 0.6 0.6 fit fit π_1 π_2 0.5 0.5 bkg bkg data data 0.4 0.4 [A.U.] Intensity [A.U.] Intensity | 5.0 Is it $\pi 1$? 0.2 0.2 graphene π_2 : graphene on 0.1 0.1 **Nickel** 0.0 0.0 10 12 10 12 10 6 6 6 8 Energy loss [eV] Energy loss [eV] Energy loss [eV] — Nickel empty grid π -plasmon: Quenching due to sp³ changing

Alice Apponi - 28.02.2024

49

To Conclude

Graphene characterisation with spectroscopy: Contaminants removed with 550°C annealing but suspended grahene breaks C 1s only sp₂ and evidence of suspended monolayer graphene Transmission of low-energy electrons (30-900 eV): Measured tranmission corrected with coverage to obtain graphene transmission Hydrogenation of C-nanostructures: Saturation of NPG achieved but H-uptake in depth should be studied

Monolayer graphene saturation seems to depend on sp²/sp³ ratio

Stil lots of fun to be had:

- Non-damaging cleaning treatment
- Total cross-section for electron-graphene interaction
- Deeper understanding of suspended graphene hydrogenation (band gap, CH bonding)

- Graphene coverage and geometrical transmission evaluated with SEM image analysis

