keV sterile neutrino search with the KATRIN experiment

Anthony Onillon, Technical University of Munich On behalf of the KATRIN collaboration

February 26 – March 1 2024 vsics Department University of Genoa, Italy

Neutrino mass measurement with tritium ß-decay kinematics

Super-allowed decay

$$\frac{dN}{dE_e} \cong C \cdot F(E,Z) \cdot P_e \cdot (E_e + m_e c^2) \cdot (E_0 - E_e) \sqrt{(E_e + m_e c^2)} \sqrt{(E_$$

KATRIN in a nutshell

- Strong tritium source: 10¹¹ decays/s
- Very low background level: < 0.1 cps</p>
- Integral measurement, very high energy resolution: O(eV)
- Small energy windows: 40 eV below endpoint
- Low rate: < 1 e⁻.s⁻¹

V. Hannen : The Karlsruhe Tritium Neutrino Experiment - an overview

v – mass results

First + second campaigns:

[Aker et al., Nature Phys. 18 (2022) 2, 160-166]

- Total statistic: 6.3 million events
- Best fit: $m_{m} < 0.8 \text{ eV}$ (90% CL)

Beyond neutrino mass in KATRIN

Search for Lorentz invariance violation

[arXiv:2112.13803]

⇒ sideral modulation

Sterile neutrino search

[PRD 105, 072004 (2022)] [arXiv:2207.06337v1 [nucl-ex] (2022)]

- eV-scale sterile neutrinos
- keV-scale sterile neutrinos

 \Rightarrow shape distortion

eV-scale sterile neutrino search motivation

Reactor antineutrino anomaly (RAA)

Systematic deficit of the reactor \bar{v}_e flux measurements with respect to the predictions of ~ 20 experiments

 $\sim 3\sigma$ deficit of reactor and Gallium flux measurement to prediction

Gallium anomaly

Systematic deficit of \bar{v}_e from very short baseline measurements with Gallium \Rightarrow confirmation by BEST [PhysRevLett.128.232501 (2021)]

S. Mohanty: Search for eV Sterile Neutrinos in KATRIN data

\Rightarrow Hint for the existence of light sterile neutrino?

keV-scale sterile neutrino search motivation

- Right-handed neutrinos: natural extension of SM and straightforward way to introduce neutrino mass
- Excellent candidate for warm dark matter: \sim 1-50 keV

Unexpected x-ray emission line around 3.5 keV observed in nearby galaxy \forall hint from astrological observations for a ~7 keV sterile $\nu \Rightarrow$ Interpretation remains inconclusive Ø ... or anything else? [Dessert et al., Science 367, 1465–1467 (2020)]

		_
THE ASTROPHYSICAL JOURNAL, 789:13 (23pp), 2014 July 1 © 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.	doi:10.1088/0004-637X/789/1/13	
DETECTION OF AN UNIDENTI X-RAY SPECTRUI ESRA BULBUL ^{1,2} , MAXIM MARKEV MICHAEL LOEWENSTI ¹ Harvard-Smithsonian Center for Astrophysic ² CRESST and X-ray Astrophysics Labor ³ NASA Goddard S ⁴ Department of Astronomy	FIED EMISSION LINE IN THE STACKED M OF GALAXY CLUSTERS TTCH ³ , Adam Foster ¹ , Randall K. Smith ¹ , EIN ^{2,4} , and Scott W. Randall ¹	doi: 10.1103/PhysR
Received 2014 Fedruary	An unidentified line in X-ray spectra of the And	dromeda galaxy and Perseus galaxy clu
We detect a weak unidentified emission line a of 73 galaxy clusters spanning a redshift rang (Perseus, Centaurus+Ophiuchus+Coma, and independent MOS spectra and the PN "all Perseus Cluster. However, it is very weak an at the limit of the current instrument capabil plasma at this energy. An intriguing possibili candidate. Assuming that all dark matter is in to a neutrino decay rate consistent with previo the line in Perseus is much brighter than exp This appears to be because of an anomalousl dielectronic recombination line, although its e difficult to understand. Another alternative is K line also exceeding expectation by a factor nature of this new line.	A. Boyarsky ¹ , O. Ruchayskiy ² , D. Iakubovskyi ^{3,4} and J. Franse ^{1,5} ¹ Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden, T ² Ecole Polytechnique Fédérale de Lausanne, FSB/ITP/LPPC, BSP, CH-1015, Lausanne, ³ Bogolyubov Institute of Theoretical Physics, Metrologichna Str. 14-b, 03680, Kyiv ⁴ National University "Kyiv-Mohyla Academy", Skovorody Str. 2, 04070, Kyiv, U ⁵ Leiden Observatory, Leiden University, Niels Bohrweg 2, Leiden, The Netherl We report a weak line at 3.52 ± 0.02 keV in X-ray spectra of M31 galaxy and the Perse observed by MOS and PN cameras of XMM-Newton telescope. This line is not known as an spectra of galaxies or clusters. It becomes stronger towards the centers of the objects; is stro than for M31; is absent in the spectrum of a deep "blank sky" dataset. Although for each of exclude that the feature is due to an instrumental effect or an atomic line, it is consistent with dark matter decay line. Future (non-)detections of this line in multiple objects may help to rev	
<i>Key words:</i> dark matter – elementary particle <i>Online-only material:</i> color figures	The nature of dark matter (DM) is a question of crucial im-	The present paper takes a step in this direction.

RevLett.113.251301 ister

We present

Laboratory search for keV sterile

Full kinematic reconstruction

- Possible decay modes:
 - Beta decay
 - Electron capture (EC)

 $_{-1}^{0}e + _{1}^{1}p \rightarrow _{0}^{1}n$

Measure energy and momentum of electron and daughter nucleus

Daughter Atom Recoil Kinetic Energy [https://beest.mines.edu]

\Rightarrow **Reconstruct** missing mass

Laboratory search for keV sterile

Production in β decays

- 4th mass state appear as a kink in the spectral shape
- Spectral distortion can extent deep into spectrum
- Candidate isotopes:
 - ³H: $E_0 = 18.5740(1) \text{ keV} \Rightarrow \text{KATRIN}$
 - ²⁴¹Pu: $E_0 = 20.78(17) \text{ keV} \Rightarrow MAGNETO-v$

[https://indico.cern.ch/event/118875]

\Rightarrow Search for a spectral distortion

Current limits and projections

data from:

- F. Benso et al., Phys. Rev. D 100, 115035 (2019)
- F. Bezrukov et al., JCAP 06, 051 (2017)
- Abdurashitov et al., JETP Letters 105, 12 (2017)
- Martoff et al., Quantum Sci. Technol. 6 024008 (2021)
- S. Friedrich et al., Phys. Rev. Lett. 126, 021803 (2021)
- M. Aker et al, Eur. Phys. J. C (2023) 83:763

⇒ Need for model independent experiments across a wide range of mass

keV-scale sterile neutrinos with the first KATRIN data

keV search with the first KATRIN data

Experimental challenge:

- Energy windows of v-mass data set too small for keV sterile neutrino search
- detector system not designed to handle very high data rates that would occurs with large energy window

12 days commissioning campaign in 2018

- Reduced isotopic abundance of 0.5%
- Integral measurement: 0.01 1.6 keV mass

Sterile neutrino fit - commissioning campaign

ROI for ν mass search

 $R_{calc}(qU)$ $= \mathbf{A}_{s} N_{T} \int_{au}^{E_{0}} R_{\beta}(E, m_{v}^{2}, \mathbf{E}_{0}, |\mathbf{U}_{e4}|^{2}, m_{4}^{2}) \cdot f_{calc}(E, qU) dE + \mathbf{R}_{bg}$

Maximum likelihood fit of model for 3v + 1

- \succ Signal normalization A_s
- \succ endpoint E_{0}
- > background R_{bg}
- > 4th neutrino mass and mixing: $|U_{e4}|^2$, m_4^2

No significant keV sterile-neutrino signal is observed in KATRIN ⇒ sensitivity

1st KATRIN results for keV sterile

95% C.L. exclusion contours

Successful demonstration of feasibility using current KATRIN detector \checkmark \Rightarrow New detector required for high rate β -spectroscopy

- No keV-sterile neutrino signal observed
- Exclusion limits competitive with previous laboratory-based searches
- Improved laboratory-based bounds for $0.1 \text{ keV} < m_{a} < 1.0 \text{ keV}$
- Dominant syst.: source activity fluctuation

keV sterile neutrino search with the TRISTAN detector

TRISTAN project

Tritium Beta Decay to Search for Sterile Neutrinos

- Future upgrade of KATRIN detector using silicon drift detector (SDD)
- Novel detector system: high rate and high resolution β -spectroscopy
 - ✓ Large area, small capacitance: small anode
 - ✓ Good energy resolution: 300 eV at 20 keV
 - ✓ Handling of high rates: >10⁵ cps/pixel

Measurement of tritium differential energy spectrum \Rightarrow Goal: ppm level on sin² θ

S. Mertens et al., J. Phys. G46 (2019) S. Mertens et al., J. Phys. G48 (2020)

Detector response

M. Gugiatti et al., NIM-A 979 (2020)
M. Biassoni et al., EPJ. Plus 136 (2021)
P. King et al., JINST 16 T07007 (2021)
D. Siegmann et al., arXiv:2401.14114v1 (2024)

Illustration for monoenergetic e⁻ of 10 keV (e-gun data)

Working principle

Transport section

- magnetic guidance
- tritium gas/ion removal

 \rightarrow reduction by > 10¹⁴

Gaseous tritium source

- molecular tritium in closed loop
- up to **10¹¹ T₂ decays/s**

Rear section

- golden rear wall
- high intensity e-gun

Experimental & modelling challenges:

Spectrometer

• MAC-E (Magnetic adiabatic collimation + electrostatic filter): high resolution, large acceptance angle

\rightarrow aim for low qU value: look deep into spectrum

Set of relevant systematic effects different than for the v mass measurement Full energy spectrum: energy/angular dependance of the systematic effects

Systematic effects

Modelling of expected spectrum

- Multipurpose / multiphysics code
- Systematic effects impact modeled by external codes (analytical / Geant4, KASSIOPEIA simulations)

 \Rightarrow Order of magnitude: $\sim 2 \times 10^{15}$ electrons per year

2017

1st prototype

7 and 47 pixels prototypes

Prototypes: 7, 47, 166 pixels

design definition and optimization performance characterization with X-rays, electrons and laser sources Senergy resolution, linearity, timing, boundary effects

⇒ Good performance demonstrated State of the second sec

Monitor spectrometer (MoS):

- september 2022

⇒ Successful operation in KATRIN-like environment ✓

refurbished MAC-E filter from Mainz experiment reassembled in KIT similar energy resolution as KATRIN main spectrometer

Integration and first electron in Iargest SDD array ever operated

L-32 and M-32 lines of ^{83m}Kr (MOS)

detector replica

Detector replica:

Old Magnet from KATRIN: up to 4.2 T

New post-acceleration system under development Large vacuum chamber compatible with full detector

Multi-modules calibration

- \geq 2nd semester 2024 \rightarrow 3 modules deployment
- \succ 1st semester 2025 \rightarrow 9 modules deployment

Detector commissioning in 2026

- Almost final module design
- SSD production started

\Rightarrow First KATRIN keV sterile neutrino search with TRISTAN

- 9 modules
- 1500 pixels

odule design n started

SSD wafer prototype

KATRIN sensitivity to keV sterile neutrino with TRISTAN

Rate consideration

Rate per pixel limited to 100 kcps due to dead time \Rightarrow Maximal total rate: ~10⁸ cps

Rate can be adjusted via

- Source activity (Column density)
- Retarding potential (mass range)
- Magnetic fields (acceptance angles)

⇒ Optimal column density for TRISTAN: percent level of nominal source activity

TRISTAN 9 modules

- Total pixels: 1494
- Golden pixels: 936 (63%)

Statistical sensitivity

Impact of the retarding potential

- Stat only
- Retarding potential *>*: mass range *>*

⇒ With high retarding potential, low statistical limit can be maintain by increasing the source activity

Statistical sensitivity

Impact of the measurement time

- Stat only
- Sensitivity improve as $\sqrt{N_{event}}$
- 10⁻⁵ level reachable within days

⇒ ~2.10⁻⁷ reachable in 1 year at the center of the mass range (N_{event} ~ 10¹⁵ in ROI)

Systematic uncertainties

- Systematic effects reduced the statistical sensitivity by at least one order of magnitude when the same beamline settings are used as for the v-mass measurement.
- Systematics are dominated by Rear Wall events.

⇒ On-going simulations and R&D
 efforts to mitigate impact of RW
 events and other systematic effects

Rear wall events mitigation

High contribution of RW events with Au

- Mitigable with new material. Further reduction with optimised magnetic fields possible for a contribution < 1% in ROI
- More technicaly challenging optimisation also investigated: blocking electric potential before rear wall

Conclusion and outlook

- KATRIN design to measure neutrino mass baseline experiments
- Search for keV-sterile neutrinos with novel TRISTAN detectors after 2025 bounds for 0.1 keV < m_4 < 1.0 keV
 - Several order of magnitude improvement of current laboratory limits expected with TRISTAN Goal: ppm level on $sin^2\theta$

Thank you for your attention!

Acknowledgement:

This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant agreement No. 852845)

Suitable to search for eV-sterile neutrinos with current setup. Competitive and complementary results to short

Successful demonstration of feasibility achieved using current KATRIN detector. Improved laboratory-based

