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Measuring Neutrino Mass (Now)
• KATRIN sensitivity: 200 meV 

Current results: 
mβ < 0.8 eV (90 % C . L.)
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CRES
• Cyclotron Radiation Emission Spectroscopy 
• Electron in B-field: cyclotron motion & radiation: 

 

• Energy resolution: 
 
 

7Phys. Rev. D 80, 051301 (2009)

ΔE
me

=
Δf
f

“Never measure 
anything but 
frequency!” — 
A. L. Schawlow⃗B
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2π f =
e⟨B⟩

me + Ke /c2
=

e⟨B⟩
γme



CRES Electron Motion
• Electron trapped in magnetic field
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CRES Electron Motion
• Electron trapped in magnetic field
• Three superimposed motions: 

• Cyclotron motion with frequency 
 
 
 

• Axial motion with frequency  that 
depends on trap design and 
electron’s pitch angle 

• Grad-B motion  from magnetic 
trapping field gradient

fa

f∇B

8

grad-B 
motion

cyclotron 
motion

axial 
motion average magnetic field  

along electron trajectory



A Typical CRES Event
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A Typical CRES Event
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A Typical CRES Event
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Scatters down in energy  
→ up in frequency

Cyclotron radiation  
→ energy loss
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A Typical CRES Event
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Scatters down in energy  
→ up in frequency

Start frequency: determines  
electron energy before losses

Cyclotron radiation  
→ energy loss

Phys. Rev. Lett. 114 162501 (2015)
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Why Go Atomic?

+ Uncertainties in molecular final states distribution!
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Project 8 Concept
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• Cold atomic tritium 
trapped magneto-
gravitationally

• Differential, non-
destructive & high 
precision electron energy 
measurement with CRES

• Source volume = detector 
volume: no electron 
transport

• Very low backgrounds



Phase I & II Results
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Phase I

13Phys. Rev. Lett. 114 162501 (2015)



Phase I

• 83mKr: electron conversion lines at 18 keV, 30 keV and a 32 keV 
• Demonstrated energy measurement of single trapped 

electrons via CRES, resolution: 3.3 eV
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Phase II

14

C
redit: A. Lindm

an, E. N
ovitski

• Effective volume: 1mm3 
• Demonstrated CRES on continuous tritium spectrum 
• First neutrino mass upper limit extraction 
• Zero background observed → background rate  
• Improved energy resolution

≤ 3 × 10−10 eV−1s−1 (90 % C . L.)



83mKr Measurements

15

• “Shallow trap”: 
• magnetic field 

calibration via Kr K-
line 

• 1.7 ± 0.2 eV (FWHM) 
energy broadening  
(2.8 ± 0.1 eV natural 
linewidth) 

• “Deep trap”: 
• Increased statistics 
• Used for tritium run 
• 54 eV (FWHM) energy 

broadening

Shallow trap depth: 0.8 mT Deep trap depth: 1.4 mT

Phys.Rev.Lett. 131, 102502 (2023)



Phase II

16Phys.Rev.Lett. 131, 102502 (2023)

T2 endpoint: 

   Frequentist:  

   Bayesian:       
Neutrino mass: 
   Frequentist:  
   Bayesian:       
Background rate: 
    

E0 = (18548+19
−19) eV (1σ)

E0 = (18553+18
−19) eV (1σ)

≤ 152 eV/c2 (90 % C . L.)
≤ 155 eV/c2 (90 % C . L.)

≤ 3 × 10−10 eV−1s−1 (90 % C . L.)

Published September 2023! Editor’s Suggestion
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• Phase I:  

• First electron spectroscopy with CRES 1
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Project 8: Phased Approach
• Phase I:  

• First electron spectroscopy with CRES 1

• Phase II:  
• First continuous spectrum measured with CRES 2 
• First  upper limit with CRES 2mβ

• Phase III: 
• Atomic source development 
• Large-volume CRES

• Phase IV: 
• Neutrino mass measurement if mβ ≥ 40 meV
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Phase III R&D: 
Atomic Tritium
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dator MECB Injection Atom TrapDissociator



Hydrogen Atom Production
• Hydrogen / Deuterium first 
• Thermal dissociation: 

• Hot Tungsten surface 
• Temperature 2200K-2500K 
• Test stand at Mainz 
• To be rebuilt at TLK for Tritium 

• Plasma dissociation 
• Initially discarded due  

to T2O formation  
• New developments:  

quartzless cavities  
• Currently under  

investigation

19
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H2 flow

@ JGU Mainz & TLK
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Credit: A. Lindman



Hydrogen Atom Production
• Hydrogen / Deuterium first 
• Thermal dissociation: 

• Hot Tungsten surface 
• Temperature 2200K-2500K 
• Test stand at Mainz 
• To be rebuilt at TLK for Tritium 

• Plasma dissociation 
• Initially discarded due  

to T2O formation  
• New developments:  

quartzless cavities  
• Currently under  

investigation

19

Hydrogen 
Atom Beam Source (HABS)

heating filament

H2 flow

MATS in 
TLK glovebox

@ JGU Mainz & TLK

Credit: L. Thorne

Credit: A. Lindman

Credit: A. Lindman



Hydrogen Atom Production
• Hydrogen / Deuterium first 
• Thermal dissociation: 

• Hot Tungsten surface 
• Temperature 2200K-2500K 
• Test stand at Mainz 
• To be rebuilt at TLK for Tritium 

• Plasma dissociation 
• Initially discarded due  

to T2O formation  
• New developments:  

quartzless cavities  
• Currently under  

investigation

19

Hydrogen 
Atom Beam Source (HABS)

heating filament

H2 flow

MATS in 
TLK glovebox

@ JGU Mainz & TLK

Credit: L. Thorne

Credit: A. Lindman

Credit: A. Lindman

See t
alk by Alec

 Lindman tod
ay



Atom Cooling
1. Accommodator: cool to 150K with 

multiple bounces at low 
recombination rate 

2. One-bounce nozzle to cool to 10K 
3. Cool by evaporation of hottest 

atoms

20

T2 cracks to T on hot 
tungsten (2200K)

T binds to 
solid surfaces (~10K)

T gravitationally storable 
in 3m high trap (~1mK)

Cool by scattering

Cool by evaporation

C
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Magnetic Evaporative Cooling Beamline

• Can this be done in a beamline? 
• Prototype with Lithium-6 @ UT Arlington 

• Don’t need to wait for cracker-accommodator-nozzle development to conclude 
• Will inform design of tritium cooling beamline

21

This side is beam prep to 5K  
(uses visible lasers to slow Li)

This side is P8 Prototype MECB  
(no lasers, except for thermometers)

C
redit: B. J. P. Jones

@ UT Arlington
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Atom Trap
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Atom Trap

22

high

lowMagnetic field strength

Halbach array: permanent magnets

Atoms

Credit: C.-Y. Liu

-4

-2

0

2

4

 F
re

qu
en

cy
, G

Hz

0.40.30.20.10.0
 Magnetic Field, T

 a 

 b 

 c 
 d 

(+1/2,+1/2)

(+1/2, -1/2)

(-1/2,-1/2)

(-1/2,+1/2)

F=1

F=0

 (ms, mi)
 Low-field seeking states
            U = + μB

 High-field seeking states
            U = - μB

Dipolar spin flip



Atom Trap

22

Atoms

Ioffe trap: superconducting coils

Credit: A. Lindman

high

lowMagnetic field strength

Halbach array: permanent magnets

Atoms

Credit: C.-Y. Liu

-4

-2

0

2

4

 F
re

qu
en

cy
, G

Hz

0.40.30.20.10.0
 Magnetic Field, T

 a 

 b 

 c 
 d 

(+1/2,+1/2)

(+1/2, -1/2)

(-1/2,-1/2)

(-1/2,+1/2)

F=1

F=0

 (ms, mi)
 Low-field seeking states
            U = + μB

 High-field seeking states
            U = - μB

Dipolar spin flip



Atom Trap

22

Atoms

Ioffe trap: superconducting coils

Credit: A. Lindman

high

lowMagnetic field strength

Halbach array: permanent magnets

Atoms

Credit: C.-Y. Liu

-4

-2

0

2

4

 F
re

qu
en

cy
, G

Hz

0.40.30.20.10.0
 Magnetic Field, T

 a 

 b 

 c 
 d 

(+1/2,+1/2)

(+1/2, -1/2)

(-1/2,-1/2)

(-1/2,+1/2)

F=1

F=0

 (ms, mi)
 Low-field seeking states
            U = + μB

 High-field seeking states
            U = - μB

Dipolar spin flip

-3 -2 -1 1 2 3 4
z (m)

-1.0

-0.5

0.5

1.0

1.5

Potential energy
for a tritium atom (�eV)

Sum of magnetic

and gravitational

potential

magnetic potential

gravitational potential

-3 -2 -1 1 2 3 4
z (m)

-1.0

-0.5

0.5

1.0

1.5

Potential energy
for a tritium atom (�eV)

Sum of magnetic

and gravitational

potential

magnetic potential

gravitational potential

Credit: Y.-H. Sun



Phase III R&D: 
CRES Detection



Cavity As CRES Volume

• Dipolar decay rate can be 
greatly reduced by 
lowering magnetic field for 
longer trapping life times

24Data from Phys. Rev. B, 33:626–628,1986
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Cavity As CRES Volume

• Dipolar decay rate can be 
greatly reduced by 
lowering magnetic field for 
longer trapping life times

24Data from Phys. Rev. B, 33:626–628,1986

Solenoid: CRES field
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Pinch coils:  
electron trap 

Field from pinch coils

• Cavity volume scales as 1/f3 

• Resonant enhancement of 
electron signal 

• Lower frequency makes 
resonant cavity desirable 
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A Cavity-Based CRES Experiment

• Cavity: open-ended, 
specific mode 
structure

• Cavity coupling: 
appropriate loaded Q

25

Cavity  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Cavity 
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A Cavity-Based CRES Experiment

• Cavity: open-ended, 
specific mode 
structure

• Cavity coupling: 
appropriate loaded Q

• Atom trapping 
magnet around cavity 
walls

• Solenoid to provide 
CRES field

• Pinch coils provide 
electron trapping

25

Cavity  
termination

Cavity 

Multipole magnet 
atom trap 

Atoms / molecules in

Solenoid magnet: 
CRES field

Pinch coils: 
electron trap

Atoms / molecules / 
untapped electrons out 



electron gun

cryocooler

Cavity CRES Apparatus

26

• Cavity at 26 GHz:
 using 

 mode 
• Inserted into 1 T MRI magnet   

• Same frequency as Phase II: can build 
on expertise with RF setup, waveguide, 
DAQ …

L = 14 cm, R = 0.7 cm, V ∼ 20 cm3

TE011
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• Cavity at 26 GHz:
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• Same frequency as Phase II: can build 
on expertise with RF setup, waveguide, 
DAQ …
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open termination 
for injection of  
calibration electrons 

trapping coils

4 K amplifiers

Credit: J. Peña

waveguide readout



Cavity Prototype Development
• Built in-house, without connected 

custom pieces  
→ verify design and fix arising issues 

•  mode at ~26 GHz 
• Length : Diameter = 10 : 1 
• Readout via waveguide from center 

• Overcoupled to increase bandwidth 
• Injection port with small loop antenna 
• Status: Fixing machining issues 
• Next: Remapping mode structure with 

bead pull 
• Bead shifts resonant frequency as  

TE011

Δω
ω

=
−(ϵ − 1)

2
Vbead

Vcavity

E( ⃗x )2

⟨E( ⃗x )2⟩

27@ MIT



@ UW

Electron Source

28
C
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• LaB6 / Y2O3 cathode, Pierce design 
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• High resolution of  in small volume  
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• Verify CRES phenomenology in resonant cavity with high SNR 
• Simulation verification 
• Reconstruction with event-by-event magnetic field corrections  
• Verify higher volume & pitch angle efficiency 

• Calibration development: electron gun 
• Main calibration device going forward 

• High resolution of  in small volume  
• Krypton line energy measurements

0.3 eV

“Small” pitch angle, θ → θmin :

e

Large pitch angle, θ ≈ 90º:

e

Cavity bandwidth

Cavity bandwidth

• Sidebands due to axial 
motion 

• Axial motion leads to 
variation in magnetic 
field along electron track 

• Larger average 
magnetic field and 
higher carrier frequency 

• Sideband detection for 
magnetic field correction

Power

Frequency

Power

Frequency



 Finalizing Phase III: 
CRES    Atoms



CRES In Atomic Trap
• Goal: Prove compatibility of CRES and atom trap fields
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CRES In Atomic Trap
• Goal: Prove compatibility of CRES and atom trap fields
• Need to prove feasibility of CRES in large volumes 

•  for cavities 
• Collected power at   is 

P ∝ V−1f −1 ∝ f 2

fc ≈ 1 GHz
𝒪(aW) (1 aW = 10−18 W)

• Custom-designed high-uniformity magnet 
• Integrated custom magnet design for atom + 

electron trapping and CRES 
• Partnering with companies on engineering 

studies 
• Started working on magnetometry, magnetic 

shielding 
• Initially CRES-only experiment, but ready for atoms 

once cold tritium beam becomes available
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Cavity-based Phase III

32
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• Atoms trapped in magnetogravitational trap 
• Sensitivity aim:  (one-

year with molecular source) and 
 (one-year  with atomic 

source) 
• Volume , field , and 

frequency   
• Blueprint for Phase IV

mβ < 200 meV (90 % C . L.)

mβ < 100 meV (90 % C . L.)

V ≈ 11 m3 B ≲ 0.011 T
fc ≲ 325 MHz

Inverted Ordering

Normal Ordering

Project 8 (Goal)

KATRIN (now)

Project 8 Phase III T

KATRIN (Design)
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Phase IV Concept
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Phase IV = 
Phase III x 10



Sensitivity

35

Effective volume 
(volume × efficiency)

Runtime

Source gas density

Response function 
stdevs. (resolution)

Background

Uncertainties on 
response function

Conservative:  
What we think today  
we can do  
Reaching target:  
What we need to do

Credit: T. E. Weiss



Sterile Neutrino Sensitivity
• Simultaneous active and 

sterile mass 
measurements possible 

• eV-scale sterile search 
planned 

• Higher mass sterile 
sensitivity under 
investigation 

• Also sensitive to relic 
neutrino overdensity from 
neutrino capture on tritium

36Credit: P. T. Surukuchi



Take Aways
• The Project 8 approach to neutrino mass measurement: 

• High precision frequency measurement 
• Source volume = detector volume 
• Differential spectrum measurement for high statistics 
• Low background 

• Next challenges: 
• Atomic tritium handling  
• Large CRES detection volumes 

• Near future: cavity CRES characterization with electron source & 
Krypton, Krypton measurements 

• ~2030: CRES & atomic trapping compatibility demonstrated 
• 2030s: First atomic tritium neutrino mass extraction 
• Final experiment: 40 meV neutrino mass sensitivity
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