Crosstalk and pile-up rejection in microwave SQUID multiplexers

J.A.B Mates, D.T. Becker, D.A. Bennett, J.D. Gard, J.W. Fowler, L.R. Vale, J.N. Ullom

University of Colorado, Boulder and National Institute of Standards and Technology Boulder, Colorado

February 27, 2024

Time-division SQUID multiplexing (TDM)

 ${\sim}200$ wires to read out ${\sim}250$ pixels

Microwave SQUID multiplexing (μ mux)

2 coaxial cables + 2 low-frequency pairs to read out ${\sim}250$ pixels

Non-hysteretic rf-SQUIDs modulate non-overlapping resonators

Non-hysteretic rf-SQUIDs modulate non-overlapping resonators

Non-hysteretic rf-SQUIDs modulate non-overlapping resonators

Read out large array with two coax + handful of DC lines

μ mux Concept

Output chain

- 1. Flux in an rf-SQUID modulates its inductance
- 2. SQUID inductance modulates resonance frequency of its resonator
- 3. Resonance frequency modulates transmission of fixed microwave tone

Flux-ramp modulation

- Linear flux ramp applied to all SQUIDs in multiplexer
- Encodes flux in the phase of the SQUID response
- Effectively linearizes
 SQUID readout
- Up-mixes signal above low-frequency two-level system (TLS) noise in resonators

Flux-ramp modulation

- Linear flux ramp applied to all SQUIDs in multiplexer
- Encodes flux in the phase of the SQUID response
- Effectively linearizes
 SQUID readout
- Up-mixes signal above low-frequency two-level system (TLS) noise in resonators

Design for high-rate calorimetry (e.g. neutrino end-point measurement):

- 2 MHz resonator bandwidth
- 14 MHz spacing
 - 64 channels per GHz

Several mechanisms of crosstalk in the microwave SQUID multiplexer:

- a) Coupled simple harmonic oscillator crosstalk
- b) Non-linear broadband component crosstalk
- c) Lorentzian tail crosstalk

Parasitic coupling between the resonators hybridizes the natural eigenstates:

$$\begin{split} & \left[\frac{1}{C} + L_1 \frac{d^2}{dt^2} & M_{x_1} \frac{d^2}{dt^2} \\ M_{x_1} \frac{d^2}{dt^2} & \frac{1}{C} + L_2 \frac{d^2}{dt^2} \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} e^{-i\omega t} = 0 \\ \Rightarrow \omega &= 1/\sqrt{C\left(\frac{L_1 + L_2}{2} \pm \sqrt{\frac{L_1 - L_2}{2} + M_{x_1}^2}\right)} \\ & \chi &\approx \frac{1}{4} \frac{\bar{\omega}^2 M_{x_1}^2}{Z_0^2} \frac{\bar{\omega}^2}{(\omega_1 - \omega_2)^2} \propto \boxed{\frac{M_{x_1}^2}{(f_1 - f_2)^2}} \end{split}$$

- Simulated and observed crosstalk follow predicted scaling with $M_{x_1}^2$ and $(f_1 - f_2)^{-2}$
- Typical coupling between physical neighbors of:
 - $\frac{\omega M_{x_1}}{Z_0} \approx 10^{-4}$
- Typical splitting between frequency neighbors of:
 - $\frac{\omega}{\omega_1-\omega_2} \approx 10^3$
- Solved by interleaving resonance frequencies!

 Broadband devices in the readout chain not perfectly linear:

 Relevant non-linearity can be quantified by *IP*3, the intercept of the 3rd-order intermodulation products with the fundamentals:

$$\begin{array}{l} IIP3 \equiv \frac{2|G_1|}{3|G_3|Z_0} \\ (\text{input-referred}) \end{array}$$

3rd-order intermodulation products transfer modulation from one carrier to another:

$$f_1 \times (f_1 + f_m) \times f_2 \rightarrow f_2 + f_m$$

Crosstalk depends on power:

$$\chi \approx \frac{4P_{\rm perp}}{IIP3}$$

- Weak crosstalk from every channel into every other channel!
- Solved with high IIP3 components.

- Long tail of each resonator's response affects its frequency neighbors
- Set by number of bandwidths apart:

$$\chi \approx \frac{1}{16(\Delta/BW)^2}$$

- Roughly 7-8 bandwidths apart for part-per-thousand crosstalk
- Fundamental limit on multiplexing factor!

Post-SQUID-modulation crosstalk

- Crosstalk occurs between flux-ramp-modulated signals
- Results in sinusoidal crosstalk after phase demodulation
- Amplitude determined by *x* parameters

Flux-ramp demodulation

- Currently demodulate in fixed windows of clean data
- One sample of the detector signal per flux-ramp period
- Pile-up events must be at least one flux-ramp period apart to be rejected

Flux-ramp demodulation

- Can demodulate in multiple overlapping windows
- Multiple (correlated) samples of the detector signal per flux-ramp period
- Possibility of rejecting closer pile-up events

Sub-flux-ramp demodulation

Sub-flux-ramp demodulation shows small oscillations proportional to signal slew-rate

Oscillations vanish at baseline and peak of pulse

Sub-flux-ramp demodulation

Oscillations vanish at baseline and peak of pulse

Sub-flux-ramp demodulation

Oscillations vanish at baseline and peak of pulse

However, it is still possible to identify pulse arrival time with sub-flux-ramp accuracy

And it is potentially possible to detect pile-up events closer than a flux-ramp period

- Microwave SQUID multiplexer provides necessary bandwidth for neutrino mass end-point measurements
- Requires careful design to minimize crosstalk between channels
- Sub-flux-ramp information may allow better pile-up rejection

