

Magnus Schlösser NuMass2024, Genova, 26.02.-01.03.2024

Cristofero Colombo

KIT - The Research University in the Helmholtz Association

www.kit.edu

KATRIN++: Prospects for the Future

Continuing the conquest of the neutrino mass

Magnus Schlösser for the KATRIN collaboration

NuMass2024, Genova, 26.02.-01.03.2024

KATRIN presentations during NuMass2024 Karlsruhe Institute of Technology 2019-2025 (PoF-IV) Scientific goal 2026-2027 (PoF-IV) Phase 2 (Differential) Neutrino Phase 1 (Integral) This talk! Neutrino mass keV sterile ν mass Volker Hannen Anthony Onillon (KATRIN overview) (TRISTAN overview) Joscha Lauer Daniela Spreng (Background) (TRISTAN technology) Weiran Xu (Analysis) Shailaja Mohanty (eV-sterile neutrinos) Benedikt Bieringer (Calibration)

Outline

2019-2025 (PoF-IV) 2026-2027 (PoF-		2028-2034 (PoF-V)	Scientific goa	
Phase 1 (Integral) Neutrino mass	Phase 2 (Differential) keV sterile ν	R&D Phase KATRIN ++		
		Atomic Tritium Demonstrator	Neutrino	
		Quantum Sensor Demonstrator	mass	

KATRIN on way to achieve 1000 d measurement time (final sensitivity m_β < 0.3 eV). Next m_β result : ~ 0.5 eV sensitivity

- We will be ready for TRISTAN-Operation at the end of 2025 (Search for keV sterile neutrinos)
- Ultimate neutrino mass experiment (Normal Ordering; sensitivity on m_{β} < 40 meV) requires differential detector principle und an atomic tritium source \rightarrow R&D Plan for PoF-V
- KATRIN++ invites research groups for tackling challenges together

Karlsruhe Tritium Neutrino Experiment (KATRIN)

The stable tritium source

- **T**₂ purity > 95%
- Source activity 10¹¹ Bq
- Source profile stable to 10⁻³ level

The stable tritium source

MAC-E filter principle of KATRIN

8 27.02.2024 Magnus Schlösser – KATRIN++: Prospect for the future

Outlook after 2027 R&D for future m_{ν} experiments

Going beyond KATRIN

KATRIN final: < 0.3 eV (90% CL) Distinguish between degenerate and hierarchical scenario

Going beyond KATRIN

- KATRIN final: < 0.3 eV (90% CL) Distinguish between degenerate and hierarchical scenario
- New technologies: < 0.05 eV Cover inverted ordering

Going beyond KATRIN

Current KATRIN performance (integral, $\Delta E = 2.7 \text{ eV}$, bg = 0.1 cps)

Differential measurement (FWHM < 1 eV)

- ✓ Better use of statistics
- ✓ Lower background
- Atomic tritium
 - ✓ Avoid broadening (~ 1 eV)
 - ✓ Avoid limiting systematics of T₂

Improved measurement principle

Integral measurement (high pass filter)

- Energy resolution determined by filter
- Detector "only" counts
- **Reduced statistics**

Differential measurement

Energy resolution determined by A) detector or B) time of flight

-

13

27.02.2024

KATRIN and **TLK** as ideal R&D facilities

KATRIN and TLK as ideal R&D facilities

Quantum sensors as high resolution differential detectors

incoming

particle

Advantages

- Energy resolution O(eV) compared to conventional detectors O(100 eV)
- Nearly 100% quantum efficiency
- Broad spectrum of possible applications

absorbere.g. Metallic Magnetic Calorimeters (MMC)Temperature-dependence in
sensor magnetizationRead-out by SQUIDEnergy resolution:
- Current:
- Midterm:
- Future: $\Delta E \leq 2 \text{ eV}$
- Midterm:
 $\Delta E \leq 1 \text{ eV}$
SQUID

Not yet tested with external electrons

Next R&D goal: Demonstrate KATRIN with a quantum sensor array

- **Type** of quantum sensor
- Operation in magnetic field
- Coupling of **mK cryo-platform** with RT spectrometer
- Large area detector and multiplexing of ~1e6 channels
- Limits to energy resolution

ELECTRON – proof of principle detection

KIT-IMS cyrostat (Kempf group)

- Ongoing: ^{83m}Kr spectroscopy
- Next step: tritium spectroscopy

First results: Detector response to external electrons and X-ray photons consistent!

8 channel detector chips & front-end SQUID chips

First krypton-83m spectrum with MMC

Silicon Drift Detector (SDD)

Metallic Magnetic Calorimeters (MMC)

Calorimetric Kr-83m spectrum with highest resolution Next: Improve cooling \rightarrow significant improvement anticipated

Next R&D goal: Demonstrate single electron tagging for ToF

KATRIN and TLK as ideal R&D facilities

KATRIN and TLK as ideal R&D facilities

The Tritium Laboratory Karlsruhe

Tritium Laboratory Karlsruhe (TLK)

TLK – A facility for high activity tritium experiments

- Closed tritium cycle for recycling and purifying tritium in gram amounts
- Currently 57 people "on board" including 8 doctoral researchers and 13 students
- Baseline cost for lab (w/o any R&D or KATRIN source) O(2 M€/year) operations & O(25 FTE) manpower

We develop safe tritium technology and versatile tritium analytics since 1993

We are able to setup and operate a large variety of experiments with tritium

Atomic vs molecular tritium

Atomic tritium demonstrator at TLK

Aim for investigation

- Develop atom cooling mechanism
- Trapping times / max. densities
- Interplay of beta-driven plasma (meV-eV) and ultra-cold trapped atoms (neV)

Tritium atom throughput on the order of 10 g/day (c.f. KATRIN: 40 g/day)

Essential for next generation neutrino mass experiment (e.g. KATRIN++) : Demonstrate the large scale generation and cooling (~10 mK) of atomic tritium

Atomic tritium demonstrator at TLK

Atomic source R&D progress

- Non-tritium hydrogen cracker being operated
- Characterization measurements for tritium beamline ongoing

- Installation of first ever atomic tritium source at TLK ongoing
- First results expected in 2024

Further R&D progress

Design of nitrogen cooled accommodator

Skimmer design for suppression of molecular background

Time-of-flight measurement for temperature studies

KAMATE – Karlsruhe Mainz Atomic Tritium experiment

Scientific / technical goals

- Atomic beam characterization
 - Atomic fraction
 - Maximal flow rates / pressure limits
 - Isotopic effects
 - Angular dispersion
 - Time-of-flight (upgrade)
 - Wire-detector

Karlsruhe

Mainz

- Cooling / accommodation (upgrade)
 - Velocity measurement
 - Recombination

Sophisticated setup based on Mainz setup

Multi chamber / collimation design, tilting mechanism, beam control, source parameter control, beam analytics

Preparing TLK for the atomic tritium demonstrator

Preparing TLK for Atomic Tritium Demonstrator

- Currently, no technology proven to reach ultimate sensitivity
- Neutrino mass detection must be confirmed by independent technologies
- Atomic tritium trap is key for both detection techniques

- Currently, no technology proven to reach ultimate sensitivity
- Neutrino mass detection must be confirmed by independent technologies
- Atomic tritium trap is key for both detection techniques

- Currently, no technology proven to reach ultimate sensitivity
- Neutrino mass detection must be confirmed by independent technologies
- Atomic tritium trap is key for both detection techniques
- CRES and bolometer complementary

- Currently, no technology proven to reach ultimate sensitivity
- Neutrino mass detection must be confirmed by independent technologies
- Atomic tritium trap is key for both detection techniques
- CRES, bolometer and ToF complementary

Possible future tritium sources

	Molecular tritium T ₂
Type of source	Dynamic injection
Scalability to higher luminosity	1
Effective limitation of resolution	-
Final-state-distribution	-
Baseline for	KATR HANNEL

Possible future tritium sources

	Molecular tritium T ₂	Atomic tritium T
Type of source	Dynamic injection	Long-lifetime trap
Scalability to higher luminosity	1 de la companya de l	Challenging
Effective limitation of resolution	1	14
Final-state-distribution	-	14
Baseline for	KATR ATR	PROJECT 8

Possible future tritium sources

	Molecular tritium T ₂	Atomic tritium T	Quasi-atomic tritium (tritiated graphene)	
Type of source	Dynamic injection	Long-lifetime trap	Surface-bound	
Scalability to higher luminosity	-	Challenging	Promissing	
Effective limitation of resolution	•	1	^	
Final-state-distribution	-	14		
Baseline for Driving question: Can graphene be tritiated?				

Tritiation of graphene

Aim: Perform first tritiation of graphene

Tritium != hydrogen/deuterium

Study effect of tritium radiochemistry on carbon monolayer

Defect generation?

Tritium binding?

Currently, atomic tritium source not available

Use autoradiolysis for generation of tritium atoms and ions

Zeller et al. (2024). arXiv:2310.16645, under Review at Nanoscale Advances

Loading experiment

- 4x mono-layer graphene on Si/SiO₂-substrate (Graphenea, ES)
- ~400 mbar T_2 (\cong ca. 7,6 × 10¹² Bq \cong 10⁴ Legal limits)
- 55h exposure time

In-situ sheet resistivity measurement on central sample with Van-der-Pauw-methode

Results after exposition (3.4×10¹⁰ Bq/cm³ for 55h)

Tritiation induces defects (~2-8%) (Autoradiolysis, ion, ...)

Zeller et al. (2022). arXiv:2310.16645, in Review bei Nanoscale Advances

Overview on KATRIN++

2019-2025 2026-2027			2028-2034 (PoF-V)	Scientific goal		
Phase 1 (integral) neutrino mass		Phase 2 (differential) keV-sterile ν		R&D phase KATRIN ++	Neutrino	
Quantum sensor R&D		Quantum sensor demonstrator	mass			
	Atomic tritium R&D		Atomic tritium demonstrator			

KATRIN on way to achieve 1000 d measurement time (final sensitivity $m_{\beta} < 0.3 \text{ eV}$). Next m_{β} result : ~ **0.5 eV sensitivity**

- We will be ready for **TRISTAN**-Operation at the end of 2025 (Search for keV sterile neutrinos)
- Ultimate neutrino mass experiment (Normal Ordering; sensitivity on m_{β} < 40 meV) requires differential detector principle und an atomic tritium source \rightarrow R&D Plan for PoF-V

KATRIN invites research groups for tackling challenges together

Start the voyage for the final discovery

Credits (KATRIN++ R&D groups)

Atomic Tritium Source

Hassan Abdulahi Ali Albert Braun **Beate Bornschein** Robin Größle Leonard Hasselmann David Hillesheimer Sebastian Koch Daniel Kurz Elias Lütkenhorst **Florian Priester** Marco Röllig Caroline Rodenbeck Magnus Schlösser Michael Sturm Nancy Tuchscherer Stefan Welte

ELECTRON / MMCs

Fabienne Bauer Neven Kovac Sebastian Kempf Michael Müller Marie Langer Rudolf Sack Magnus Schlösser Markus Steidl Kathrin Valerius Daniel de Vincenz

Tagger / ToF Andrew Gavin Reyco Henning Eric Martin Christian Weinheimer

Tritiated graphene Deseada Diaz Barrero Simon Niemes Magnus Schlösser Helmut Telle Paul Wiesen Genrich Zeller

Simulations Svenja Heyns Ferenc Glück Woosik Gil Susanne Mertens

Cryogenics Matteo Biassoni Andrea Nava

Overview of the tritium supply structure

Tritium operation in numbers 2019 – now

- 873 days of circulation (T₂, Kr)
- 141 gas transfers to KATRIN
- 254 gas transfers to infrastructure

27.3 kg integral tritium throughput:

- Tritium purity > 98%
- Necessary tritium inventory: 15 g
- TLK license: 40 g (≈ 1.5 x 10¹⁶ Bq)