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➼The goal: design a material for tritium based neutrinos detection for
➺Neutrino mass from β-decay
➺Detection of relic neutrinos

➼The needs: 
➺High events rate ⇒ large concentration of tritium 
➺e- efficient collection ⇒ large exposure of tritium
➺Filtering and control of ΔV ⇒ good conductance of the material
➺High resolution ⇒ flat tritium potential (loose binding) 

➼Why tritium @ graphene?
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➺High tritium loading
➺Huge exposed surface 
➺Conductive
➺Tunable interaction potential
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Tritium @ graphene

Is graphene the ideal material for the tritium based detector?

Not so fast…

✻ Limits of loading, depending of the “kind” of graphene and conditions of tritiation 
✻ Limits in conduction, depending on the amount and distribution of loaded tritium
✻ T potential strongly depending on local/global structure of graphene and magnetization state

➺Ab Initio Calculations to evaluate these issues and optimize the material

➺High tritium loading
➺Huge exposed surface 
➺Conductive
➺Tunable interaction potential

✻The day (femtosecond) after… 
➺ Preliminary calculations of the ultra-fast dynamics just after the  T→ He transformation
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system state density

Vacuum,	T2 Molecular	liquid Up	to	0.21	g/cm3	=	200	kg/m3

Vacuum,	T Atomic	gas/plasma ~0.5μg/cm3	 =	0.5	g/m3

T:	graphene
(rippled,	nanoporous)

Chemisorbed	
(100%	loading)	

0.019	μg/cm2	=0.19mg/m2

0.1g/cm3	 =	100	kg/m3	

T2@	graphene
(nanoporous)

Physisorbed	
(at	77K,	molecular)

Up	to	0.03	g/cm3	=	30kg/m3

T@fullerite encapsulated Up	to	~0.0036	g/cm3	=	3.6	
mg/cm3	=	3.6	Kg/m3

T/T2@nanotubes encapsulated	 Up	to	~0.02g/cm3	=	
20	mg/cm3=	20	Kg/m3

(H)T can be either chemisorbed 
or physisorbed on graphene 

Betti et al Nano Lett. 2022 

>1eV

<50meV
Tritium @ graphene: Loading
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Chemisorbed tritium Chemisorption occurs in different configurations and loading levels, 
depending on the external conditions during tritiation (pressure, 
temperature, external fields, pristine state of graphene…) 

Isolated
/dimers 

Clusters/islands Stripes

GraphAne chair

GraphAne boat

GraphOne

Random

Conductivity, magnetic properties, tritium binding potential: 
   ALL DEPEND on the level and configuration of loading

100%
0.19 mg/m2

50%
0.1 mg/m2

10%
0.02 mg/m2
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π

π*

ü Wide-band flat optical response
ü Exceptional carriers mobility (𝜇 x 1000 of Cu)
But:
✗ The carriers density 𝑛	is null at Fermi Level
✗ 𝜇  is lowered by scattering with defects
✗ The gap opens for any kind of defect

Graphene: hexagonal 2D lattice of C atoms
     ⇒ gap-less semiconductor, with linear dispersion for 

carriers π (electrons) and π* (holes)
     ⇒ pseudo-relativistic massless 2D Dirac equation for 
        electrons and holes, at the non relativistic 
        Fermi velocity vf	 =	c/300

Conductivity and band gap

−𝑖𝑣!𝜎⃗ ' ∇𝜓 𝐫 = 𝐸𝜓 𝐫 	

DoS
Fermi energy

A
B

(electrons and holes behave as  particle/antiparticle)

conductance 𝜎 = 𝑒𝜇𝑛

Fermi 
energy

𝜎 = 𝑒𝜇(𝑛") 𝑛(𝐸# 𝑛" )

Tritiation reduces the conductance 
by reducing the mobility and 
opening the band gap
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Density Functional Theory calculations

ü Density Functional Theory: maps the 
many electron problem onto an 
independent electron problem within an 
effective potential dependin on the 
electron density 

ü Outputs
➺ Electron density ρ(r)	and full electronic structure → Bands&gaps, Fermi 

level, optical properties, transport… 
➺ Electron spin density ζ(r)  → magnetism
➺ Forces on nuclei → vibrational properties and molecular dynamics
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Gap vs coverage

GW or 
B3LYP

Bare 
DFT

graphAnegraphEne

But data from calculations (and exp as well) are very 
messy mainly because of different hydrogenation 
modality 

• one or two side
• clusters or random
• geometry of hydrogenation (strips, islands, …)

Band gap generally decreases with T loading 
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Gap vs coverage
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Nanoribbons sculpted  in graphane (PRB  2011) The gap-vs-stripes width 
dependence is similar to that of 
graphene nanoribbons…

… leading to simple behavior 
of gap vs coverage 

focusing on  simple geometries: Tritiation per stripes
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Tritiation per islands In the per-island 
tritiation a similar trend 
can be derived  



NuMass 2024, Feb 27th Dept Physics, University of Genoa Slide 11

Gap vs coverage
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In summary, tritiation by stripes or islands:

ü Explains the messy data

ü Suggests ways to combine high coverage 
with conductivity
➺ Double side coverage is better than 

single side
➺Ordered tritiation leaving connected 

tritium-free channels is better than 
disordered
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Stability and magnetic properties
Isolated tritium
ü Eb ~ 0.7,  Ed ~ 1.2 eV
ü Local lattice deformation (sp2 → sp3)
ü Alternated sub-lattice magnetically 

polarized around the binding site

Ed

Eb

Nearby binding (~ 5Å)
ü Eb ~ 1.3,  Ed ~ 1.6 eV 

larger stability because 
the lattice is already 
deformed

Dimers (~ 1.4-3 Å)
ü The effect is amplified 

Eb , Ed  up to 2.5eV

ü Additionally, in the 
para-dimer the 
same sub-lattice 
sites are occupied 

→ the magnetization 
is amplified, but the 
stability is lowered
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Stability and magnetic properties

r0=1.15Å

r1=2.10Å

Mz=+14 (unbound T -1)3.

ü GraphOne chair conformation (50%) is completely magnetically 
polarized 

⇒ Favored (~µBB	 for each unit cell) in magnetic fields 

ü The binding is destabilized Eb ~ 0.4,  Ed ~ 0.7 eV 
ü Additional barriers spin flip barriers

Cov (%) Conf Mag Ed (eV) Ea (eV) Eb   (eV)

100 Chair 0 4.35-4.38 0-0.3 4.35

100 Chair 2 1.5 1.0 0.5

50 chair 16 0.71 0.37 0.34

6 2H trans, d=5.7, 0 1.64 0.33 1.31

3 Isolated 2 1.18 0.48 0.7

6 Dimer orto trans 0 2.55 0.19 2.36

6 Dimer meta trans 2 0.89 0.29 0.60

6 Dimer para trans 0 1.93 0.36 1.57

6 Dimer orto cis 0 2.5 0.7 1.79

6 Dimer meta cis 2 0.92 0.27 0.65

6 Dimer para cis 0 2.07 0.32 1.75

Summary table

Eb spans 4 eV range
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Exploring 3D Binding potential of T in 100% graphene (chair) 

ü Eb ~ Ed ~ 4.4 eV 
ü The bound state is non magnetic
ü spin singlet-triplet transition occurs during detachment
ü If the system is forced in the magnetized state, the binding is 

destabilized, but a barrier of ~1.5eV appears

ü The lateral potential of T was explored steering 
it on x y planes at increasing z

➺ Complete mapping 
of the potential 
for evaluating solid 
state effects on 
the resolution 

(→A Esposito et al)
➺ The lateral 

potential stiffness 
decreases as the 
bond is elongated

El fields could modulate the potential 
   and control the “solid state” effects on resolution

Steered dynamics 
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Isolated/
dimers 

Clusters/islands Stripes

GraphAne

GraphOne

Features of tritiated graphene in a nutshell 

100%50%10%Loading/T density

Magnetism

Isolated, 
meta dimers

Chair 
conformation

Band gap/conductivity (qualitative)

stripes

T binding potential (qualitative) 
~1eV

~4eV
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... but the real one are more like this

ü The real structures properties will 
be an average of the regular ones, 
weighted by their occurrence

ü Desorption energies were evaluated 
by Programmed thermal desorption 
expt and Classical Molecular 
dynamics simulations

ü In particular, on a ~65% double 
side loaded sheet: Ed= 1-2eV,  
compatible with a combination of 
dimers and small clusters

(Simulations on different 
configurations are in the course)

Features of tritiated graphene: the realistic case

“Regular” structures…

Luca Bellucci 
et al
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concave

convex

ü The dependence of the T binding potential on the local 
curvature of the sheet is very strong

ü encapsulated T within nanotubes and fullerenes is very 
loosely bound 

ü Flat potential along the nano tube axis 

Loosely bound T for neutrino capture

S=1 triplet
S=0 singlet
Not restrained

ü The potential in the center of 
fullerene is also flat and 
magnetization dependent (work 
in progress)

ü Relatively high densities in compact 
forms (fullerite and nantubes bundles)

Possible material for relic 
neutrinos detection?

PRB 2022 PTOLEMY colaboration
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system charge Mag μB/cell
M, Mz

ΔE =E0-Efin 

(eV)

1. isolated +1 0 -2.72

2. grounded neutral 1 -5.18

Charge 1+

T	
(K
)

Fermi	Level

In both cases, very specific vibrational 
modes and electric signals are activated 
upon He release

Dynamics after the T decay or ν capture  

T	
(K
)

What happens next? Just after the T→ He transformation

1. Isolated system: after the β release the system is iso-electronic with 
graphane and magnetically neutral but charged due to the He+

Fermi	Level

He is released as neutral atom, leaving the system charged 
with 1 missing electron

  2.7 eV energy gain upon release
  There is however a weakly vdW bound state 

2. Grounded system: after the β release the system draws one electron and becomes neutral, but magnetized. The system 
releases He with double energy than in the isolated case, though a very weakly vdW bound state still exist 

Could these vibrations and 
currents be used for detection?

(Very preliminar)
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Conclusions
ü We explored by ab initio calculations and 
simulations different conformations of T 
chemisorbed on graphene 

ü Increasing loading generally opens the gap but 
   there are favorable conformation for 
   conduction with high loading
ü The system is magnetic in very specific conformations (alternate occupation)
ü The T binding potential depends very much on the configuration and loading
ü Random conformations are easier to obtain, but less favorable for detection 

purposes

ü Encapsulated graphene results in a flat potential for T
   
ü After the T->He transition

ü He tends to be released 
ü Specific electric and vibrational signals are generated
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Thank you for your attention
 Guido Menichetti    Physics Dept, University of Pisa (Italy) 
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