

I DE DE DE DE

因而自由种用于

Calorimetric measurement: pro & cons

The radioactive source is embedded in the detector(s). ⇒

Most of the unwanted source related effects are avoided.

• Only the neutrino energy escape detection.

Important limits on the single pixel activity (pile-up).

• Activity also limited by the correlation between energy resolution and detector size.

EC decay spectrum of Ho163

¹⁶³Ho +
$$e^- \rightarrow {}^{163}$$
Dy^H + $\nu_e \rightarrow {}^{163}$ Dy + E_C^H + ν_e

$$\frac{d \lambda_{EC}}{dE_C} = N(Q - E_C) \sqrt{[(Q - E_C)^2 - m_v^2]} \times \sum_H \frac{\varphi_H^2(0)(\Gamma_H/2\pi)}{[(E_C - E_H)^2 + {\Gamma_H}^2/4]}$$

CALORIMETRIC MEASURE	MENTS OF 163 HOLMIUM DECAY AS TOOLS	
TO DETERMINE THE ELEC	TRON NEUTRINO MASS	
A. DE RÚJULA and M. LUSI	GNOLI 1	

 $E_c = nuclear \ recoil + inner \ bremmstrahlung + X \ rays + auger \ electrons$

AT A LEADER DE

EC decay spectrum of Ho163

• Additional calculations (e.g. Ab initio calculation) predict several additional features.

Shake-up, shake-off

M. Braß, C. Enss, L. Gastaldo, R. J. Green, and M. W. Haverkort https://doi.org/10.1103/PhysRevC.97.054620

Ho163 spectral shape, is it important?

- What we must know:
 - Energy of the main peaks.
 - Shape of M1 peak.

• Shape of the entire Ho spectrum.

Calibration

Detector response (FWHM)

> Sensitivity studies

NuMass 2024 – Determination of the absolute electron (anti)-neutrino mass

Next-gen calorimetric experiments, requirements & sensitivity

Next-gen calorimetric experiments, requirements & sensitivity

• ... it depends on the expected rate in the ROI.

Worst case scenario: I order theory

- Pixel activity ~ 100 Bq/det
- Time resolution below 0.1 us
- Energy resolution = 1 eV
- About 1M pixels, 10 y measurement for ~ 200-100 meV sensitivity

Next-gen calorimetric experiments, requirements & sensitivity **Requirements:** LTD working at low temperature (e.g. @30mK). LTD with fast rise (reduce pup fraction) and fast decay time (reduce dead time). Affordable multiplexing technique with large BW. Efficient implantation technique. Large cryogenic infrastructure.

• If you want to increase the sensitivity, you need (as always) to go

HOLMES goal

- Evaluate the feasibility of this approach.
 - Desing robust analysis routines for LTD data-handling, pile-up rejection and data analysis of *n* independent detectors.
 - Test the performance of fast TES detectors, readout with proper multiplexing technique.

Perform a first "test" measurement of the neutrino mass.

- Implant the Holmium inside a TES detectors.
- Study the Ho163 spectral shape.

□ Increase the single pixel activity.

Done Ongoing

latteo Borghesi

TES for HOLMES

• TES: superconductor film operated in the narrow temperature region between the resistive and the superconducting state

• Designed to be fast: additional copper perimeter to decrease the recovery time of the signal

L. Origo talk: "163Ho-implanted TES for a calorimetric m_nu measurement"

The detector array

Readout chip: $\mu mux17a$. 33 quarter wave resonators + rf-squids. PCB with 8 pins Bias chip CPW 7.5 cm TES array: 2 modules of 32 detectors each

Noise of a 32 TES detectors readout with μmux

A DE MA DA MA

11111111111111

Measurement setup

• 3 He/ 4 He diluition refrigerator (200 μW of cooling power @100 mK)

Implantation results so far

First implantation

Bad TES working pointBackground too high

~ 12 mm

- Mean activity $\simeq 0.24$ Bq
- Total activity $\simeq 10$ Bq

Second implantation

- Mean activity $\simeq 0.30$ Bq
- Total activity > 15.4 Bq

Runs summary

• With external Fluorescence calibration source

• Goal: Characterize the main peaks of the Ho spectrum.

	July 2023				Feb 2024	
						Л
Run 1	Run 2	Run 3	Run <i>n</i>	Run 6	Run 7	_ >
Jun 2023				Jan 2024	ŀ	V
With extGoal: O	ternal ⁵⁵ Fe calibra bserve the first 	ation source. IOLMIUM spectrum.	August 2023	I		
			• Just Ho163.			

First Physics run!

目前自由利用

Characterization of the Ho163 spectrum (I)

- **Goal**: find a good model to <u>locally</u> describe the main Ho163 peaks
- Only ½ of the chip used (32 detectors) (one of our amplifiers failed, now fixed!)
- We use an external fluorescence calibration source

Fluo calibration source

Setup @MC plate

Characterization of the Ho163 spectrum (II)

• 50 holmium spectra were recorded, "cleaned" and calibrated.

Characterization of the Ho163 spectrum (III)

• Bayesian parameter estimation.

spectra = $gaus(0, \sigma) \otimes [I \times cauchy_{asym}(E, E_0, \gamma, \xi) + bkg]$

$$cauchy_{asym} \propto \begin{cases} cauchy(E, E_0, \gamma_L) & E \le E_0 \\ cauchy(E, E_0, \gamma_R) & E > E_0 \end{cases} \qquad \gamma_L = \frac{\gamma \times \xi}{\xi + 1} \\ \gamma_R = \frac{\gamma}{\xi + 1} \end{cases}$$

likelihood ~ *poisson(spectra)*

Characterization of the Ho163 spectrum (III)

2 14 12 14 11 1

目的自己的时代

Characterization of the Ho163 spectrum (IV)

• How can we achieve a robust estimation of the peak position?

Characterization of the Ho163 spectrum (IV)

Assumption: the energy shifts δE are normally distributed around 0 (prior)

Global fit

- Fit spectra from *n* detectors at the same time.
- Probably the most accurate method. But computationally expensive!
- Four parameters for each detector: resolution (σ), bkg (bkg), peak intensity (I), energy shift (δE).
- Peak position (E_0), gamma (γ) and asymmetry (ξ) are common parameters.

Bayesian learning

- Fit spectra from *n* detectors recursively. The posterior of the former is prior for the latter.
- The single peak model has to be modified in order to take into account the energy shift.
- Update the prior just for the common parameters: Peak position (E_0) , gamma (γ) and asymmetry (ξ) .
- Assumption (reasonable): model the posterior distribution for the common parameters as gaussian.

Characterization of the Ho163 spectrum (IV)

Posterior distribution with Bayesian learning

Characterization of the Ho163 spectrum (V)

Peak	Position [eV]	Gamma [eV]	Asymmetry
M1	2040.8 ± 0.3	14.49 ± 0.05	1.306 ± 0.006
M2	1836.4 ± 0.8	8.2 ± 0.3	1.03 ± 0.05
N?	454.5 ± 0.1	22.3 ± 0.4	0.62 ± 0.02
N1	411.72 ± 0.1	5.57 ± 0.03	1.270 ± 0.008
N2	329.0 ± 0.1	16.4 ± 0.2	0.69 ± 0.01

Using those peak positions to calibrate a dataset, we get for AI and CI 1486 \pm 1 eV (1486.706 (10) eV) and 2623 \pm 1.2 (2622.39 (9) eV) eV, respectively

- No external fluorescence calibration source.
- Run started last week!

1 measurement acquired so far: 24 channels, 60 continuous hours

2150

Sum over 24 TES (60h measurement)

用 開 開 閉

因行用用利用用

MMMM

因行用的利用

• Event rate in the ROI could be higher than predicted?

Energy interval [eV]	Expected events*	Measured events
2500-2860	50 ± 7	90
2600-2860	15.5 ± 4	30
2700-2860	3 ± 1.7	9

* From I order theory

• Needs to be investigated.

Conclusion

We are ready to start our very first physics run.

HOLMES and ECHo are laying down the fundamentals for the next-gen calorimetric experiment.