Neutrinoless double beta decay and inference on neutrino mass and nature: current efforts

Irene Nutini, INFN Milano Bicocca NuMass Workshop, Genova - Feb 27th, 2024

What do we know about neutrinos and open questions

Neutrinos are the lightest known elementary fermions. They do not carry electric or color charge, and are observable only via weak interactions (v_L - negative chirality neutrino).

3 neutrino flavours $(v_e, v_u, v_\tau) \in Neutrino flavour oscillations \rightarrow 3 neutrino mass eigenstates <math>(v_1, v_2, v_2)$

It is necessary to extend the Minimal Standard Model (MSM) to accommodate for massive neutrinos

Open questions:

- How the neutrino mass eigenstates are ordered (normal/inverted hierarchy)?
- Which are the neutrino mass absolute values?
- Why the neutrino mass is so small wrt to the other SM particles?
- The neutrinos neutral leptons are Dirac or Majorana particles?

What do we know about neutrinos and open questions

Neutrino flavour oscillations

Sum of neutrino masses

Experimental searches \langle

Direct neutrino mass measurement

Majorana nature of neutrino

Sterile neutrino searches

Precision measurement of neutrino flavour oscillation parameters (solar, atmospheric, accelerator and reactor neutrinos): T2K, Nova, Daya-Bay, Super-K; DUNE, Hyper-K, JUNO

Cosmological and astrophysical data: CMB – PLANCK, BA= – SDSS and large scale structures

β-decay or EC: KATRIN, PROJECT-8 and PTOLEMY (³H), HOLMES and ECHO (¹⁶³Ho)

Neutrinoless double beta decay (Ονββ) CUORE/CUPID, LEGEND, nEXO, NEMO; Kamland-Zen, SNO+; AMoRE; NEXT

eV/keV-scale sterile neutrino: FNAL SBN program (MicroBoone, ICARUS, SBND), PROSPECT, NEOS, DANSS, Neutrino-4

Neutrino mass nature: Dirac or Majorana

Neutrinos are the only particles in the SM that could be *Majorana fermions*, that is, completely neutral fermions not carrying any other charge-like conserved quantum number, that are their own antiparticles.

Whether neutrinos are Majorana or Dirac particles depends on the nature of the physics that give them mass

Dirac neutrino

- Adding v_R to the neutrino field
- v_L active, v_R sterile for weak interactions
 Yukawa coupling with Higgs doublet for v mass
- 4 v states with same mass
- Impose the lepton number conservation

$$-\mathcal{L}_D = m_D(\overline{\nu_L}\nu_R + \overline{\nu_R}\nu_L)$$

where
$$m_{\nu} = y_{\nu}v$$

Majorana neutrino

- Majorana condition (valid only for neutral fermions): $v^c = v$ where $v^c = C\bar{v}^T$
- v_{R} for a Majorana vobtained from v_{I} : $v_{R} = (v_{L})^{c}$
- Majorana mass term: converts particles into their antiparticles
- Lepton number violating mass term ($\Delta L = 2$)

$$-\mathcal{L}_L = \frac{1}{2}m_L(\overline{\nu_L}(\nu_L)^c + \overline{(\nu_L)^c}\nu_L).$$

See-Saw mechanism: Light active v_i; Heavy sterile N₁

Neutrino mass nature: probing the Majorana nature

- Scattering of non-relativistic neutrinos: CvB (Cosmic Neutrino Background), -
 - Indirect evidence of CvB from cosmological probes
 - CvB:

 - if Dirac v: v_R population absent if Majorana v: both v_L and v_R populations present v capture on beta decaying nuclei: capture rate is double for Majorana neutrinos
 - Current experiments for CvB detection: PTOLEMY
- *Lepton number violating processes* _
 - Neutrinoless double beta decay $(0v\beta\beta)$
 - Nuclear process involving relativistic neutrinos
 - Physical phenomenon violating the total lepton number L (Δ L =2)
 - Matter creation process mediated by: $W^-W^- \rightarrow l_{\alpha}^- l_{\beta}^-$ via light Majorana neutrino exchange

Double beta decay

Double beta decay is a rare nuclear transition, a second-order weak decay where a nucleus (A, Z) undergoes two beta decays to its isobar (A, Z+2), in a single step emitting two electrons in the process.

35 suitable nuclei in nature for double-beta decay: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹²⁸Te, ¹³⁶Xe ..., which are all even-even nuclei and the beta transition to the intermediate nucleus is forbidden. Q-value ~ MeV

Two-neutrino double beta decay ($2v\beta\beta$)

$$(A, Z) \longrightarrow (A, Z+2) + 2e^- + 2\overline{\nu}_e$$

- 2^{nd} order process allowed in Standard Model ($\Delta L = 0$)
- Proposed in 1935 by M.Goeppert-Mayer
- Observed in several nuclei: $T^{1/2}_{2\nu\beta\beta} \sim 10^{19-21} \text{ yr}$ (among the longest ever observed among radioactive decay processes)

Most relevant measurable quantity: sum of the kinetic energy of the electrons produced in the decay – continuous spectrum with endpoint at $Q_{_{BB}}$

 $2\nu\beta\beta$ electrons sum energy spectrum

Neutrinoless double beta decay (Ovββ)

$$(A,Z) \longrightarrow (A,Z+2) + 2e^{-}$$

- Beyond Standard Model process: violation of lepton number ($\Delta L = 2$)
- Proposed by W.H.Furry in 1939 as a method to test the Majorana theory applied to neutrinos
- Not yet observed:

$$T_{0v\beta\beta}^{1/2} > 10^{22-26} \text{ yr}$$

Experimental signature of $0v\beta\beta$ decay: a peak in the summed energy spectrum of the final state electrons at the Q-value of the $\beta\beta$ decay ($Q_{\beta\beta}$)

Comparing $2v\beta\beta$ and $0v\beta\beta$

Similarities

- The electrons carry essentially all the available energy
- The transition involves 0⁺(gnd) → 0⁺(gnd) states. Transitions to excited states are suppressed due to smaller phase space
- 2nd order weak processes: $\Gamma \sim G_F^4$, with G_F =1.166 3787 x 10⁻⁵ GeV

Differences

- 2vββ: sum e⁻ kinetic energy spectrum continuous
 vs 0vββ: sum e⁻ kinetic energy spectrum peak
- 2vββ: low momentum transfer ~ Q_{ββ}1(MeV)
 vs 0vββ: high momentum transfer ~ 100MeV
- Phasespace preference to the Ovββ mode, which is, however, forbidden by total lepton number conservation.

Other lepton number violating rare decays

There are other three 2nd order rare decays, with a lepton number violating counterpart, that can also be investigated: $a^+ a^+ 0 = (7 - 4) + 2 - 4$

 $\beta^{+}\beta^{+}0\nu : \quad (Z, A) \to (Z - 2, A) + 2 e^{+}$ $\beta^{+}EC0\nu : e^{-} + (Z, A) \to (Z - 2, A) + e^{+}$ $ECEC0\nu : 2 e^{-} + (Z, A) \to (Z - 2, A)^{*}.$

All three involve transitions where the nuclear charge decreases (as opposed to increasing, as in $\beta\beta$) by two units.

- From the theoretical point of view, the physics probed by $\beta+\beta+0\nu$, $\beta+EC0\nu$ and ECEC0 ν is identical to the one probed by $\beta\beta0\nu$.
- From the experimental point of view, however, $\beta+\beta+0\nu$ and $\beta+EC0\nu$ are less favorable than $\beta\beta0\nu$ because of the smaller phase space available. On the other hand, the process ECEC0 ν is gaining some attention recently as a promising (but still much less developed) alternative to $\beta\beta0\nu$, since a resonant enhancement of its rate can in principle occur

$O_{\nu\beta\beta}$ decay and inference on neutrino mass

The standard neutrinoless double-beta decay mechanism: light Majorana neutrino exchange

The parent nucleus emits a pair of virtual W bosons. The W exchange a Majorana neutrino to produce the outgoing electrons. The exchanged neutrino can be seen as emitted (in association with an electron) with almost total positive helicity. For a massive Majorana neutrino, it has a small, O(m/E), negative helicity component which is absorbed in the other vertex by the Standard Model electroweak current.

From the decay rate it is possible to infer the effective neutrino mass

$Ov\beta\beta$ decay and inference on neutrino mass

The standard neutrinoless double-beta decay mechanism: light Majorana neutrino exchange

$$\frac{1}{T_{1/2}^{0\nu}} \propto G(Q_{\beta\beta}, Z) |M_{nucl}|^2 |m_{\beta\beta}|^2$$

Effective neutrino mass term $|m_{_{\beta\beta}}|^2$

Neutrino mass matrix M_v can be decomposed as $M_{\nu} = U \operatorname{diag}(m_1, m_2, m_3) U^t$ where $m_i > 0$ are the masses of the neutrinos and U is the PMNS mixing matrix

Define the effective Majorana mass $m_{_{\beta\beta}}$ where ϕ_i are called Majorana phases and cannot be probed by oscillation experiments. $m_{_{\beta\beta}}$ is the ee-element of the mass matrix $|(M_{_{y}})_{ee}|$

$$m_{\beta\beta} = \left| \sum_{i=1}^{3} |U_{\rm ei}^2| \ e^{i\varphi_{\rm i}} \ m_{\rm i} \right|$$

$Ov\beta\beta$ decay and inference on neutrino mass

The standard neutrinoless double-beta decay mechanism: light Majorana neutrino exchange

$$\frac{1}{T_{1/2}^{0\nu}} \propto G(Q_{\beta\beta}, Z) |M_{nucl}|^2 |m_{\beta\beta}|^2$$

Effective neutrino mass term $|m_{BB}|^2$

 $0v\beta\beta$ is directly connected to neutrino oscillations phenomenology, and that it also provides direct information on the absolute neutrino mass scale, as cosmology and decay experiments do.

Rev. Mod. Phys. 95, 025002;

https://doi.org/10.1103/RevModPhys.95.025002

$O_{\nu\beta\beta}$ decay and inference on neutrino mass

The standard neutrinoless double-beta decay mechanism: light Majorana neutrino exchange

$$\frac{1}{T_{1/2}^{0\nu}} \propto G(Q_{\beta\beta}, Z) |M_{nucl}|^2 |m_{\beta\beta}|^2$$

Nuclear Matrix Elements

Factoring out the hadron coupling gA wrt to just the nuclear many-body part and to light neutrino exchange

All nuclear methods used to study $0v\beta\beta$ decay make a significant effort to describe with high quality the structure of the initial and final nuclei and the relative long and short-term interactions among nucleons.

Models: Shell model, QRPA, EDF theory, IBM, Ab-initio methods

$$|M_{nucl}|^2 = g_A^4 |M_{light}^{0\nu}|^2$$

$$M_{light}^{0\nu} = M_{long}^{0\nu} + M_{short}^{0\nu}$$

$O_{\nu\beta\beta}$ decay and inference on neutrino mass

The standard neutrinoless double-beta decay mechanism: light Majorana neutrino exchange

$$\frac{1}{T_{1/2}^{0\nu}} \propto G(Q_{\beta\beta}, Z) |M_{nucl}|^2 |m_{\beta\beta}|^2$$

Nuclear Matrix Elements

The variation of the NME about a factor three for a given isotope, highlights the uncertainties introduced by the approximate solutions of the nuclear many-body problem.

Current strong effort to improve the nuclear models for multiple isotopes and quantify the NMEs theoretical uncertainties

EDF IBM ORPA 6 NSM IMSRG 5 CC M ^{Ov} long 3 2 0 ⁸²Se ¹⁰⁰Mo ¹¹⁶Cd ¹³⁰Te ¹³⁶Xe ⁴⁸Ca ⁷⁶Ge ¹⁵⁰Nd

Rev. Mod. Phys. 95, 025002;

https://doi.org/10.1103/RevModPhys.95.025002

$0\nu\beta\beta$ decay and implications

Observation of ονββ decay would imply: Lepton number violation Presence of a Majorana term for the neutrino mass Constraints on neutrino mass hierarchy and scale Hint on origin of matter/anti-matter asymmetry (baryogenesis via leptogenesis involving Majorana neutrinos)

The importance of $0_{\nu\beta\beta}$ decay has triggered a continuously evolving line of research with dedicated experiments spanning several isotopes and a rich selection of detector techniques

Experimental Ovββ sensitivity

The number of observable $0\nu\beta\beta$ decays is limited by the fluctuations of the background counts around $Q_{\beta\beta}$ (region of interest, ROI)

'Finite background'

$$S_{0
u} \propto \eta \cdot \epsilon \cdot \sqrt{rac{M \cdot T}{\Delta \cdot B}}$$

'Zero background' (B $\cdot \Delta \cdot M \cdot T$) << 1

$$S_{0\nu} \propto \eta \cdot \epsilon \cdot M \cdot T$$

Ingredients for $0\nu\beta\beta$ decay experiments

Isotope choice - High isotope natural abundance or enrichment, η - High Q-value, Q_{ββ}

Detection technology

- Good detection efficiency

 (ε): ββ source embedded
 into the absorber
- Excellent energy resolution (Δ)
- Low backgrounds (B)

Exposure

- Large active mass (M) detector

- Long live-time (T)

Experimental Ονββ sensitivity

Choice of the isotope

The candidate isotopes for $0\nu\beta\beta$ experimental search are those readily available at the level of thousands of moles (i.e., hundreds of kg) or more, with a high Q-value and thus a large decay rate, and compatible with existing detection technologies.

Large source: ton-scale, > 10^{27} nuclei

- Isotopes with high natural η
- Enrichment of the isotope

High Q-value preferred for larger phase-space and lower potential backgrounds

Experimental Ονββ sensitivity

Signal detection and experimental observables

- Cinematic parameters of the two emitted electrons
- Summed (kinetic) energy of the two electrons Track reconstruction of the single electrons
- Detection of the daughter nucleus, as ion++
- Gamma rays emitted in decay to excited states

Experimental $O_{\nu\beta\beta}$ sensitivity

Signal detection and detector concepts

Solid state detectors with an embedded source	Monolithic liquid or gas detectors with an embedded or dissolved source	Composite detectors with external sources
		EXTERNAL SOURCE LATE
INTERNA	LSOURCE	Rev. Mod. Phys. 95 , 025002; <u>https://doi.org/10.1103/RevModPhys</u>

Experimental $O_{\nu\beta\beta}$ sensitivity

Signal detection and detector concepts

Solid state detectors with an embedded source	Monolithic liquid or gas detectors with an embedded or dissolved source	Composite detectors with external sources
Single crystals: ~kg, 100cm ³ , high granularity, up to ton-scale	Linear dimensions 1-10m, volumes ton-kton	Isotope mass and number of readout detectors proportional to the foil area
ε ~ 70-95% for MeV e-	ε ~ 75-100% for MeV e-	ε ~ 30 % for MeV e-
only calorimetric meas	calorimetry meas + if good spatial reso, event topology	calorimetry meas + track reconstruction of single e-
Δ~0.1% @MeV	∆~10-30% @MeV	∆~1-3% @MeV but energy reco limited by energy losses

Experimental Ονββ sensitivity

Backgrounds

Natural radioactivity (α , β , γ radiation from ²³⁸U and ²³²Th chains):

- Levels < 1 μ Bq/kg are required ← → Ordinary material 1-100 Bq/kg
 - Material selection and cleaning procedures for all the detector components
 - Strict radiopurity controls during detector assembly
 - Radon abatement systems
- Identification and suppression of backgrounds via the study of event topology or particle identification techniques

Experimental Ovββ sensitivity

Backgrounds

Cosmic rays

Underground laboratory \rightarrow Muon flux reduction by > 10⁶

 Reconstruction of residual muons crossing the detector active volume

Cosmic rays induced spallation processes:

- Activate unstable cosmogenic nuclei → minimize above ground exposure; delayed time coincidence with primary muon
- Produce high energy neutrons

Neutrons

Generated by rock radioactivity and muons

- \rightarrow Quality and depth of the underground laboratory
- \rightarrow Dedicated shieldings are often required

La Rivista del Nuovo Cimento (2023) 46:619–692 https://doi.org/10.1007/s40766-023-00049-2

Experimental Ovββ sensitivity

Backgrounds

$2v\beta\beta$ decay

Intrinsic and irreducible background.

- Detector finite resolution: some of the highest energy $2v\beta\beta$ decay events reconstructing with energies at $Q_{_{BB}}$.
- if the $2\nu\beta\beta$ decay rate is high compared to the desired $0\nu\beta\beta$ decay sensitivity, $2\nu\beta\beta$ decay events can pile-up and contribute to the background at $Q_{_{BB}}$

Anthropogenic radioactive isotopes

Result of nuclear accidents or nuclear weapon tests. Potential background source if Q-value > $Q_{\beta\beta}$, and half-life ~ experiment's lifetime

Neutrinos

Irreducible background. Negligible if active material is mostly made of the $\beta\beta$ isotope, but becomes significant for liquid scintillator experiments with dissolved sources

$Ov\beta\beta$ experimental searches: yesterday and today

A broad experimental program has been mounted in the last few decades to search for $0\nu\beta\beta$ decay. Very diverse technologies have been developed and tested, leading to experiments with setting half-life limits up to 10^{26} years.

Different detection approaches and background suppression techniques

Each detection concept is characterized by specific parameter combinations.

Rev. Mod. Phys. 95, 025002; https://doi.org/10.1103/RevModPhys.95.025002

Ovββ experimental landscape

High-purity Ge semiconductor detectors

Germanium can be enriched in the $\beta\beta$ isotope ⁷⁶Ge and transformed into high-purity germanium (HPGe) detectors, devices characterized by superb energy resolution (2–3 keV at Q_{$\beta\beta$}), high efficiency (80–90%) and particle ID tagging.

LEGEND (⁷⁶Ge):

- Builds on the completed MJD and GERDA experiments
- Pulse shape discrimination: multi site vs. single site events
- Anticoincidence with LAr active shield,
- Project:
 - LEGEND-200: up to 200 kg of ⁷⁶Ge, @LNGS (Italy)
 bkg goal 0.6 cts/(FWHM·t·yr)= 2 x 10⁻⁴ cts/(keV kg yr)
 - LEGEND-1000:
 1000 kg of ⁷⁶Ge, bkg goal <0.03 cts/(FWHM·t·yr)

LEGEND

Ονββ **experimental landscape**

High-purity Ge semiconductor detectors

LEGEND (⁷⁶Ge):

- LEGEND-200: Began stable data taking March 2023 (140 kg), with complete 200 kg array planned early 2024 _
- LEGEND-1000: Conceptual design in progress, projected 3σ _ discovery sensitivity $m_{BB} = 9-21 \text{ meV} (T_{1/2} = 1.3 \times 10^{28} \text{ yr})$

⁷⁶Ge (88% enr.)

IO man range

0.1 counts/EWHM-t-v

1.0 count/EWHM-t-v 10 counts/FWHM-t-v

10³⁰

10²⁸

10²⁸

LEGEND-1000

LEGEND-200

GERDA/MII

Xenon time-projection chambers

TPCs are particularly well-suited to searches for the $0v\beta\beta$ decay of 136Xe. Xe inert noble element, can be used directly in TPCs; it exhibits VUV scintillation emitted promptly with an energy deposition. Xe TPCs also potentially lend themselves to techniques for observation of the daughter Ba ion.

nEXO (136Xe)

- Homogeneous, liquid enrXe single-phase TPC scaled to 5 tonne total mass
- Built on the successful EXO-200, @SNO-Lab
 - Energy resolution $\Delta E(s) 0.8\%$ @Qbb
 - Measurement of both charge and scintillation
 - Single site (including signal) vs. multi site events (background)

• Status: Conceptual design in progress, projected 3σ discovery sensitivity $m_{\beta\beta} = 6-27$ meV ($T_{1/2} = 0.74 \times 10^{28}$ yr)

Sensitivity vs exposure:

Xenon time-projection chambers

NEXT (¹³⁶Xe)

High pressure (10-15 bar) enriched Xe TPC @LSC

- Primary scintillation ($t_0 \rightarrow z$ coordinate)
- Electroluminescence for energy resolution (PMT plane) and for tracking (SiPMs plane) → only light detection, also for the charge readout
- Energy resolution (0.7% FWHM)
- Topological separation ($\beta\beta$ vs β)
- Status:
 - NEXT-White (10 kg) @LSC completed
 - NEXT-100 (100 kg) construction underway @LSC
 - NEXT-HD proposed to extend to 1t
 - R&D towards tagging ¹³⁶Ba daughter (NEXT-BOLD)

Reconstruction of $\beta\beta$ event:

NEXT results (P.Novella) @TAUP2023

Large liquid scintillators

Large liquid-scintillator detectors, have a successful track record in low-background searches in neutrino physics. Loading them with large amounts of $\beta\beta$ isotopes represents a cost-effective way to search for $0\nu\beta\beta$. \rightarrow Active isotope mass > 1 ton, high radio purity, limitations in energy resolution

SNO+ (¹³⁰Te)

Reuse the acrylic vessel, the PMT array and the electronics of the SNO detector @SNO-Lab: Te-loaded liquid scintillator → Scintillator purification system & optical properties → Novel metal loading technique

• Status: • Water phase complete

- Pure scintillator phase in progress (780 t)
- Phase I Te loading to start in 2024: 0.5% ^{nat}Te \rightarrow 1.3 t ¹³⁰Te
- Planned Phase II with 3% Te

Large liquid scintillators

Kamland-zen (136Xe)

Enriched Xenon diluted (3 wt%) in liquid scintillator exploiting the existing KamLAND detector with the addition of a nylon balloon

→ Most sensitive search to date for $0v\beta\beta$: $m_{\beta\beta}$ < 36–156 meV

Project @Kamioka: • KLZ-800: Mini-balloon with 745 kg of ¹³⁶Xe, currently in operation • KamLAND2-Zen: Proposed to improve energy resolution, 1t ¹³⁶Xe mass

Phys. Rev. Lett. 130, 051801 (2023)

And And Ten

KLZ-800 observed spectrum:

Cryogenic calorimeters

Cryogenic calorimeters, often referred to as bolometers, are one of the most versatile types of detectors for rare events searches. Crystals typically used in $0\nu\beta\beta$ decay experiments: masses ~ (0.2–0.8) kg; operated at **10–20 mK**; energy resolutions ~ 2–10 keV at Q $\beta\beta$; containment efficiency varies 70–90%

CUORE (130Te)

From few g to 1 tonne TeO_2 cryogenic calorimeters for $\beta\beta$ -decay search

CUORE

Cryogenic calorimeters

CUORE (130Te)

- Technological challenge: operating 988 detectors (742 kg TeO₂) - read out with NTD thermistors - at 15mK continuously for >5 years with >90% uptime, @LNGS (Italy)
- Acquired > 2.5 TY TeO2 exposure as of today
- 2025 Planned final exposure for CUORE: 3TY TeO2 (1TY ¹³⁰Te)

<u>CUORE 0vββ updates (K.Alfonso) @TAUP2023</u>

Pulse tubes

Dilution unit

Cryogenic calorimeters

CUORE: what's next?

- CUORE is an ideal calorimeter. TeO₂ detectors measure only heat \rightarrow no discrimination of α vs β/γ events in the ROI.
- Need for hybrid approaches to discriminate/reduce the α contribution in the ROI. Use other $\beta\beta$ candidates (⁴⁸Ca, ⁸²Se, ¹⁰⁰Mo) with high Q_{$\beta\beta$} and/or scintillating compounds

CUPID (CUORE Upgrade with Particle IDentification)

 ${\rm Li_2^{100}MoO_4}$ scintillating crystals (CUPID-Mo, successful proof of concept)

readout of both heat and scintillation light

 \star alpha-particle and $\beta\beta\,$ pileup rejection using light signal $\star^{100}Mo\,\beta\beta$ decay candidate: $Q_{_{\beta\beta}}\,$ ~3034 keV

Thermal

Sensor · Light

Thermal

Sensor

Energy

Release

Light Detector

Absorber

$0\nu\beta\beta$ experimental landscape

Cryogenic calorimeters

CUPID (100Mo)

• Reusing CUORE cryogenic infrastructure @LNGS (Italy) • Detector array with 1596 Li_2MoO_4 scintillating crystals, enriched > 95% in ¹⁰⁰Mo (~250 kg of ¹⁰⁰Mo), paired with Ge-light detectors

- \cdot bkg goal < 10⁻⁴ cts/(keV kg yr),
- nominal resolution $\Delta E(Q_{\beta\beta}) \sim 5 \text{ keV}$

• Status:

- CUPID tower design demonstrators in progress
- Conceptual design in progress, projected 3σ discovery sensitivity m_{ββ}=12-20 meV (T_{1/2} = 1 x 10²⁷ yr)

CUPID updates (C.Nones) @TAUP2023

Ονββ experimental landscape

Cryogenic calorimeters

AMORE (100 Mo)

• Scintillating bolometers with ^{enr}Mo: ^{48depl}CaMoO₄ and Li₂MoO₄ • Thermal sensors: MMCs

- Status:
 - AMoRE-I (2020-2023, 6.2 kg ¹⁰⁰Mo) Physics data at 12mK @Y2L(Corea) bkg 0.03 cts/(keV kg yr), $\Delta E(Q_{g_{\beta}}) \sim 9.5-28$ keV AMoRE-II (from 2024) @Yemilab (Corea)
 - Stage 1: 90 LMOs (27 kg ¹⁰⁰Mo); Stage 2: 360 crystals (157 kg ¹⁰⁰Mo) Over 100 kg of enriched ¹⁰⁰MoO, powder has been purified

AMoRE-I tower: AMoRE-II concept:

AMoRE-I updates (K.Hanbeom) AMoRE-II plans (Y.Oh) @TAUP2023

Ovββ experimental landscape

Tracking calorimeters

The $0\nu\beta\beta$ source is in the form of a foil sandwiched by drift chambers with an applied magnetic field for discriminating electrons and positrons, beyond which lies calorimeters for measuring energy. Capability of precisely measuring properties of the decay kinematics: single-energy spectra and opening angle distributions.

SuperNEMO (^{82}Se and other $\beta\beta$ isotopes)

- \cdot Full topological reconstruction
- Background rejection
- Unique $2\nu\beta\beta$ measurements (nuclear effects, new physics)
- \cdot Ability to probe $0\nu\beta\beta$ mechanism if discovered \cdot Status: Demonstrator currently taking data (~6 kg 82Se) @Modane

<u>Status of SuperNEMO (C.Patrick)</u> @TAUP2023

supernemo

collaboration

Ονββ experimental landscape: summary

m_{ßß} [eV]

Current $ov\beta\beta$ decay experiments: exploring multiple isotopes and technologies; pushing to reach the upper part of Inverted Hierarchy in the m_{$\beta\beta$} plot

Next generation of $ov_{\beta\beta}$ decay experiments seek to be sensitive to the full Inverted Hierarchy region:

 $S_{ov} \sim 10^{27} \text{ yr}, m_{\beta\beta} \sim 6 - 20 \text{ meV}$

Key ingredients:

- Reach the 'zero background' regime: lower the background (and improve energy resolution) in the ROI
- Larger active masses

Conclusions

Searches for $0\nu\beta\beta$ are a powerful probe of lepton number violation in nature and the most sensitive experimental test of whether neutrinos are Majorana particles.

There is at present a diverse and healthy competition among a variety of experimental techniques. Many projects aim at extending the present sensitivity. Continuous theoretical progress on determining accurate NMEs and LNV phenomenology for $0\nu\beta\beta$ decay.

Next-generation experiments have a good discovery potential!

Image from ββ decay review - A. Giuliani (TAUP2021)

$2v\beta\beta$ and $0v\beta\beta$: current measurements/limits

Target isotopes currently being pursued by $ov\beta\beta$ leading experiment.	Target isotopes cur	rently being pu	rsued by $ov\beta\beta$ lea	ading experiments
---	---------------------	-----------------	-----------------------------	-------------------

Isotope	Daughter	$Q_{\beta\beta}{}^{\mathbf{a}}$	$f_{ m nat}{}^{ m b}$	$f_{\rm enr}^{\rm c}$	$T_{1/2}^{2\nu\beta\beta\mathrm{d}}$	$T_{1/2}^{0 uetaeta_{\mathbf{e}}}$
		$[\mathrm{keV}]$	[%]	[%]	[yr]	[yr]
^{48}Ca	⁴⁸ Ti	4267.98(32)	0.187(21)	16	$(6.4^{+0.7}_{-0.6}(\text{stat})^{+1.2}_{-0.9}(\text{syst})) \cdot 10^{19}$	$> 5.8 \cdot 10^{22}$
76 Ge	76 Se	2039.061(7)	7.75(12)	92	$(1.926 \pm 94) \cdot 10^{21}$	$> 1.8 \cdot 10^{26}$
⁸² Se	⁸² Kr	2997.9(3)	8.82(15)	96.3	$(8.60 \pm 0.03(\text{stat})^{+0.19}_{-0.13}(\text{syst})) \cdot 10^{19}$	$> 3.5 \cdot 10^{24}$
⁹⁶ Zr	⁹⁶ Mo	3356.097(86)	2.80(2)	86	$(2.35 \pm 0.14(\text{stat}) \pm 0.16(\text{syst})) \cdot 10^{19}$	$> 9.2 \cdot 10^{21}$
¹⁰⁰ Mo	¹⁰⁰ Ru	3034.40(17)	9.744(65)	99.5	$(7.12^{+0.18}_{-0.14}(\text{stat}) \pm 0.10(\text{syst})) \cdot 10^{18}$	$> 1.5 \cdot 10^{24}$
¹¹⁶ Cd	116 Sn	2813.50(13)	7.512(54)	82	$(2.63^{+0.11}_{-0.12}) \cdot 10^{19}$	$> 2.2 \cdot 10^{23}$
$^{130}\mathrm{Te}$	¹³⁰ Xe	2527.518(13)	34.08(62)	92	$8.76^{+0.09}_{-0.07}(\mathrm{stat})^{+0.14}_{-0.17}(\mathrm{syst}) imes 10^{20}$	$> 2.2 \cdot 10^{25}$
136 Xe	^{136}Ba	2457.83(37)	8.857(72)	90	$(2.165 \pm 0.016(\text{stat}) \pm 0.059(\text{syst})) \cdot 10^{21}$	$> 1.1 \cdot 10^{26}$
¹⁵⁰ Nd	$^{150}\mathrm{Sm}$	3 371.38(20)	5.638(28)	91	$(9.34 \pm 0.22(\text{stat})^{+0.62}_{-0.60}(\text{syst})) \cdot 10^{18}$	$> 2.0 \cdot 10^{22}$

add reference

Neutrino mass nature: Dirac or Majorana

Neutrinos are the only particles in the SM that could be Majorana fermions, that is, completely neutral fermions that are their own antiparticles.

Dirac neutrino

- 4v states with same mass
- Impose the lepton number conservation
- Yukawa coupling with Higgs doublet for v mass
- Degenerate states
- $v_{\rm L}$ active, $v_{\rm R}$ sterile

$$\mathcal{L}_{mass,\nu}^{D} = m_{\text{D}}' \overline{\nu}_{L} \nu_{R} + h.c.)$$

where
$$m_{\nu} = y_{\nu}v$$

• Heavy sterile partners N_i

Neutrinoless double beta decay is an unique tool to probe the majorana Nature of the neutrino

$O_{\nu\beta\beta}$ decay and inference on neutrino mass

In theories beyond the Standard Model, there may be several sources of total lepton number violation which can lead to $0\nu\beta\beta$. Nevertheless, irrespective of the mechanism, $0\nu\beta\beta$ necessarily implies Majorana neutrinos.

Black box (or Schechter–Valle) theorem

$Ov\beta\beta$ decay and inference on neutrino mass

The standard neutrinoless double-beta decay mechanism: light Majorana neutrino exchange

$$\frac{1}{T_{1/2}^{0\nu}} \propto G(Q_{\beta\beta}, Z) |M_{nucl}|^2 |m_{\beta\beta}|^2$$

Effective neutrino mass term $|m_{_{BB}}|^2$

 $0v\beta\beta$ is directly connected to neutrino oscillations phenomenology, and that it also provides direct information on the absolute neutrino mass scale, as cosmology and decay experiments do.

The relationship between $m\beta\beta$ and the actual neutrino masses mi is affected by:

1. the uncertainties in the measured oscillation parameters;

2. the unknown neutrino mass ordering (normal or inverted);

3. the unknown phases in the neutrino mixing matrix (both Dirac and Majorana).

$O_{\nu\beta\beta}$ decay and inference on neutrino mass

The standard neutrinoless double-beta decay mechanism: light Majorana neutrino exchange

$$\frac{1}{T_{1/2}^{0\nu}} \propto G(Q_{\beta\beta}, Z) |M_{nucl}|^2 |m_{\beta\beta}|^2$$

Phase space integral

Phase-space factors are calculated analytically and are quite accurately known for all relevant nuclei used in $0\nu\beta\beta$ decay experiments

La Rivista del Nuovo Cimento (2023) 46:619–692 https://doi.org/10.1007/s40766-023-00049-2

$Ov\beta\beta$ decay and inference on neutrino mass

The standard neutrinoless double-beta decay mechanism: light Majorana neutrino exchange

$$\frac{1}{T_{1/2}^{0\nu}} \propto G(Q_{\beta\beta}, Z) |M_{nucl}|^2 |m_{\beta\beta}|^2$$

Nuclear Matrix Elements

The "gA quenching" is a potential source of uncertainty in $0\nu\beta\beta$ -decay NMEs. Most calculations systematically overestimate β -decay Gamow–Teller matrix elements. This implies the need of a correction, by quenching the value of the axial coupling $g_A (g_A' = q g_A \text{ with } q \sim 0.7 - 0.8)$.

$$|M_{nucl}|^2 = g_A^4 |M_{light}^{0
u}|^2$$

Very recently decay β -decay has been studied with the ab initio methods. These calculations suggest that the overprediction of matrix elements is more likely related to the GT β -decay operator than to gA.

Experimental Ονββ sensitivity

Backgrounds

 $Ov_{\beta\beta}$ decay events can be mimicked by a plethora of other physics processes, which can be induced by:

- natural radioactivity (a, b, g radiation),
- cosmic rays,
- neutrons,
- anthropogenic radioactive isotopes,
- neutrinos,
- $2v\beta\beta$ decay

Experimental $O_{\nu\beta\beta}$ sensitivity

Backgrounds

Discrimination techniques

Ovββ experimental landscape: summary

Discovery sensitivities of current- and next-generation $ov_{\beta\beta}$ decay experiments for exchange dominated by the light neutrino exchange, and effect of the NMEs.

Rev. Mod. Phys. **95**, 025002; <u>https://doi.org/10.1103/RevModPhys.95.025002</u>