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Neutrino mass in particle physics
● Nature of the neutrino: Majorana or 

Dirac particle, i.e. is the neutrino it's 
own anti-particle ?

● How to explain the many orders of 
magnitude difference between neutrino 
mass limits and masses of the charged 
fermions of the standard model
→ sea-saw type I and type II 

mechanisms

● Possible connection to the generation 
of the observed matter - antimatter 
asymmetry in  the universe 
→ leptogenesis
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KATRIN

Mainz / Troitsk

ν - oscillations

dark energy

dark matter

baryons

stars / gas

Neutrino mass in cosmology
● Neutrinos are (after γ's) the second most 

abundant particle species in the universe
 

● As part of the hot dark matter, neutrinos have 
a significant influence on structure formation

● For large Σmν values fine grained 
structures are washed out by the 
free streaming neutrinos

Ʃ Ʃ

Ʃ Ʃ
Chung-Pei Ma 1996
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Current knowlegde and open questions
What we know (from ν oscillations):
 

● Neutrino flavour eigenstates differ 
from their mass eigenstates

● Neutrinos oscillate, hence they 
must have mass

● Mixing angles and Δm2 values 
known (with varying accuracies)

What we don't know :
 

● Normal or inverted hierachy ?
● Dirac or Majorana particle ?
● CP violating phases in mixing 

matrix ?
● No information about absolute 

mass scale ! (only upper limits)
● Existence of sterile neutrinos ?

normal
hierachy

inverted
hierachy

absolute
scale ?
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β-decay: absolute ν-mass
model independent, kinematics
status: mν < 0.8 eV
potential: mν ≈ 0.2 eV
e.g.: KATRIN, Project-8, ECHO
HOLMES, NuMECS

0νββ-decay: eff. Majorana mass
model-dependent (CP-phases)
status: mββ < 36 meV to 156 meV

[136Xe, Phys. Rev. Lett. 130, 051801 (2023)]
potential: mββ ≈ 20-50 meV
e.g.: KamLAND-Zen, GERDA, CUORE, EXO, 
         SNO+, Majorana, Nemo 3, COBRA

cosmology: ν hot dark matter Ων

model dependent, analysis of CMB and 
structure formation data
status:   Σmi < 0.11 eV

[Planck PR4 release, A&A, 682 (2024) A37] 

neutrino mass
measurements

Search for neutrino mass

mν
2 =∑|U ei

2|mi2 mββ =|∑U ei
2mi|

∑mi
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(modified by final state distribution, recoil corrections, 
radiative corrections, ...)

T-decay

C=
GF
2

2π3
cos2θC|M|2

d Γ
dE =C p(E+me)(E 0−E )√(Eo−E )2−mν

2 F (Z+1 , E )Θ(E0−E−mν)S (E )

Kinematic determination of m(νe)

Suitable Isotopes:
 

Tritium
● E0    = 18.6 keV, T1/2 = 12.3 a
● S(E) = 1 (super-allowed)

Rhenium
● E0 = 2.47 keV, T1/2 = 43.2 Gy

alternative approach:
 

Holmium (EC decay)
● QEC ≈ 2.5 keV, T1/2 = 4570 y

mν
2 =∑

i=1

3

|U ei|
2mi

2
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KATRIN experiment at KIT

70 m

curren
tly
not
activeleaving
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Windowless Gaseous Tritium Source

● beam tube Ø = 9 cm , L = 10 m
● guiding field 2.5 T
● Temperature 80 K ± 0.01 K
● T2 purity 95% ± 0.1 %
● column density 5·1017 T2/cm2

● luminosity 1.7·1011 Bq
● T2 flow rate 5·1019 molecules/s

(40 g of T2 / day)

WGTS at Tritium Laboratory Karlsruhe
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● adiabatic transport → μ = E⊥/ B = const.
 

● B drops by 2·104 from solenoid to analyzing plane → E  ⊥ → EII    
 

● only electrons with EII > eU0 can pass the retardation potential 
 

● Energy resolution ΔE = E ,max, start⊥  · Bmin / Bmax < 1 eV

MAC-E filter concept
Magnetic Adiabatic Collimation with Electrostatic Filter

A. Picard et al., NIM B 63 (1992)
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Main-Spectrometer

● 18.6 kV retardation voltage, σ < 60 meV
● energy resolution 2.7 eV (SAP mode)
● pressure < 10-11 mbar
● Air coils for earth magnetic field compensation
● Double layer wire electrode for background

reduction and field shaping

σE = 50 meV
(single angular 

emittance)
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Focal Plane Detector

Focal plane detection system
 

● segmented Si PIN diode:
90 mm Ø, 148 pixels, 50 nm dead layer
 

● energy resolution ≈ 1 keV
 

● pinch and detector magnets up to 6 T
 

● 10 kV post acceleration
 

● active veto shield

pre-amplifier wheel
segmented Si-PIN wafer

detector magnets at KIT
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Measurement principle

● Direct shape measurement of integrated β spectrum

squared
mass m2

ν

spectrum 
ampl. Asig

spectrum 
endpoint E0

background 
rate Rbg 

~10-8 of all β-decays in scan 
region ~40 eV below endpoint
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Four fit parameters:

Eur. Phys. J. C 79 (2019) 204
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Model of the experimental spectrum

Beta spectrum: Rb(E,m2(ne))

Experimental response: f(E-qU)

Ä

PRL 123 (2019) 221802, EPJ C 79 (2019) 204
+ detailed analysis PRD 104 (2021) 012005 

+ energy loss measurement  EPJ C 81 (2021) 579

KATRIN β-scan

data +
model fit
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Extracted neutrino mass limits
1st campaign (spring 2019)

 

● total statistics: 2 million events
 

● best fit result:
 

● mass limit: 

2nd campaign (autumn 2019)
 

● total statistics: 4.3 million events
 

● best fit result:
 

● mass limit:

Combine 1st and 2nd campaign:
 

● mass limit: 

Cross-check: endpoint energy
 

  E0 = 18573.69 ± 0.03 eV  → Q-value: 18575.2 ± 0.5 eV
 

  → good agreement with Penning trap experiments:
 

      Q = 18575.72 ± 0.07 eV

mν
2 = 0.26−0.34

+0.34 eV2

mν < 0.9 eV (90%CL)

mν < 0.8 eV (90%CL)

mν
2 =−1.0−1.1

+0.9 eV2

mν < 1.1 eV (90%CL)

Nature Physics 
18 (2022) 160

PRL 114 (2015) 013003
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Activity fluctuations
● column density
● Tritium purity 

(T2, DT, HT)

Molecular final states
● Quantum-chemical

computations

Main systematic uncertainties

Sensors 20 (2020) 4827

Energy loss by scattering

Magnetic fields
● source
● spectrometer
● detector

Source electric potential
● plasma properties
● surface conditions

Background
● Volume dependent “Rydberg” background
● Voltage dependent background
● Time structure due to trapped electrons

EPJ C 79 (2019) 204
EPJ C 81 (2021) 579 

JINST 13 (2018) T10004 
Eur. Phys. J. A 44 (2010) 499
Astropart. Phys. 138 (2022) 102686
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Background sources

figure courtesy of F. Fränkle

Main sources of background electrons originating inside or between the spectrometers:
 

● Time-dependent background due to inter spectrometer Penning trap
● Non-poissonian distributed background due to stored electrons from Radon decays
● Volume dependent background from ionization of Rydberg states created by radioactive decays on the 

inner vessel surface
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Reduction of experimental backgrounds

Eur. Phys. J. C 82 (2022) 258

• Reduction of radon related backgrounds by LN2 baffles
 

• Removal of inter-spectrometer Penning trap to
eliminate background time dependence
 

• New spectrometer field configuration (shifted 
analysis plane) reduced background by factor 2
and removes non-poissonian backgrounds

see Talk by Joscha Lauer, Mo. 15:00
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Response function measurement

  1-fold, 2-fold, 3-fold inelastic      
                               scattering

● Determination of the experimental response function using a mono-energetic, angular selective
photo-electron source driven by a pulsed UV-laser

● Measurement of integral and differential (using
TOF method) spectra at different column densities
→ Extraction of spectrometer transmission 
    function and energy losses due to scattering

integral data

TOF data

Extract differential 
energy loss 
function

EPJ C 81 (2021) 579
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Improving source related systematics

J. Phys. G 47 (2020) 065002

• Data of 2020 krypton run at 40% tritium column density used to constrain systematics in 2nd 
campaign

• Since then: New operation mode with stable co-circulation of tritium and 83mKr at 80 K at high column 
density for simultaneous monitoring

• From summer 2021 on: calibration with high intensity (10 GBq) gaseous 83mKr source to map out 
source potentials

Einlass

   
   

  G
as

 d
en

si
ty

Injection PumpingPumping see Talk by  Benedikt Bieringer, Fr. 10:45
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KATRIN data taking

1.
1 

eV

0.
8 

eV

KNM1-5
~20% of all KATRIN data

+ +

Light sterile neutrinos Relic neutrinos

First tritum run

EPJC 80 (2020) 264

PRL 123 (2019) 221802 Nat. Phys. 18 (2022) 160 PR D 105 (2022) 072004 PRL 129 (2022) 011806 



21Volker Hannen, NuMass 2024

Next analysis release

mν < 0.3 eV (90%CL)

sensitivity expectation KNM1-5 results 

More on analysis methods: talk 
by Weiran Xu, Thu. 16:00

Annu. Rev. Nucl. Part. Sci. 72 (2022) 259

Combined analysis of first five campaigns
 

● Currently in unblinding process
 

● Next data release in summer
 

Sensitivity projection KNM1-5
 

●

 

Improvements:
 

● Factor six in statistics
 

● Background reduction
 

● More accurate knowlegde 
of systematics
 

Contiunation of current measurement programm
until end of 2025 

● collect 1000 days of beta scans
● expect to reach sensitivity  

mν ≤ 0.5 eV (90%CL)
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Search for Lorentz 
invariance violation 

(sidereal modulation)

Search for exotic 
weak interactions 
(spectrum shape)

Is there a fourth 
(sterile) neutrino?

m
as

s

eV … keV 
separation?

Constrain local over-
density of cosmic relic 

neutrinos (peak search)

Neutrino mixing: “Kink” in 
normal β-spectrum (eV scale) 
or deep β-spectrum (keV scale)

Beyond neutrino mass searches

PRL 129 (2022) 011806

High statistics, high 
precision β spectrum

JHEP01 (2019) 206
PoS DISCRETE2022 (2024) 011

Phys. Rev. D 107 (2023) 082005

Phys. Rev. D 105 (2022) 072004
Phys. Rev. Lett. 126 (2021) 091803
JCAP02 (2015) 020
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● 3+1 sterile neutrino model
● Same data-set as for the neutrino mass
● Grid search in m4, |Ue4|2 plane

(Light) sterile neutrino signature

6 Fit Parameters:
 

m2 - neutrino mass (free/constrained)
E0 - endpoint
N - amplitude
B - background rate

m4
2 - 4th neutrino mass

|Ue4|2 - 4th neutrino mixing
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Current dataset
●KATRIN starts to probe very interesting parameter space, complementary to oscillation 

searches
●approaching the BEST 

allowed regions with 
Dm41

2  > 10 eV2
 

Final dataset
●Probing large portion 

of RAA, BEST and 
Neutrino-4 allowed 
regions

●comparable sensitivity 
to neutrinoless double 
β-decay

Limits on light sterile neutrinos

see Talk by  Shailaja Mohanty, Thu. 11:25 PR D 105 (2022) 072004
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Future plans: keV scale sterile neutrinos

TRISTAN project in KATRIN:
● novel multi-pixel Silicon Drift Detector array
● large count rates
● excellent energy resolution
● prototypes installed as monitoring
devices @ KATRIN

● target sensitivity: sin2θ < 10-6

keV-scale sterile neutrino search:
● sterile neutrinos on keV-scale are a 

viable candidate for dark matter in 
the universe (WDM)

● First scans deep into the β-spectrum
during FT campaign at 0.5% c.d.
arXiv:2207.06337v1 (2022)

● high-sensitivity search requires
new high-rate detector system 
(TRISTAN) to handle huge electron 
rates from WGTS over large spectral range Data from:

F. Bezrukov et al., JCAP 06, 051 (2017)
J. N. Abdurashitov et al., JETP Letters 105, 12 (2017)
F. Benso et al., Phys. Rev. D 100, 115035 (2019)
C. J. Martoff et al., Quantum Sci. Technol. 6 024008 (2021)
S. Friedrich et al., Phys. Rev. Lett. 126, 021803 (2021)
M. Aker et al. , arXiv:2207.06337 (2022)

see Talks by Anthony Onillon, Wed. 9:40
 and Daniela Spreng, Wed. 10:50
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Future plans: KATRIN++
Advancing further with kinematic neutrino mass  
measurements
● New source concepts:

remove spectral broadening
due to molecular FSD by
going to an atomic tritium
source

● Novel detector technologies
required for a differential 
measurement with O(eV)
resolution

see Talk by Magnus Schlösser, T
ue. 14:15

KATRIN++
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Summary
● Studies of β-decay kinematics offer a model-independent way to determine the neutrino 

mass, complementary to cosmology and 0νββ searches
 

● The KATRIN experiment has finalized the analysis of the first two science runs and
published the first sub-eV neutrino mass limit with mν < 0.8 eV
 

● Several improvements allowed to strongly reduce experimental background and systematic 
uncertainties 
 

● Analysis of KNM3 to KNM5 science runs ongoing, analysis release expected in summer
 

● KATRIN has the capability to study several physics topics beyond neutrino mass:
 

● eV-scale sterile neutrinos (first upper limits published)
● keV scale sterile neutrinos (future project with new focal plane detector TRISTAN)
● upper limit on local relic neutrino overdensity
● investigations of Lorentz invariance
● search for exotic weak interactions

Funded by:
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