BABAR, stato e richieste 2012

Alberto Lusiani

INFN Pisa, 20 giugno 2011

BABAR Membership Numbers

奉

72 institutions in our 12 countries

	Faculty & Staff	Postdocs	Gr Student	ALL	Stud. Assoc.
CANADA	10	5	7	22	1
FRANCE	21	2	3	26	
GERMANY	7	3	11	21	
INDIA	1		1	2	
ISRAEL	1		3	4	
ITALY	50	10	12	72	6
NETHERLANDS	1		1	2	
NORWAY	2	1		3	
RUSSIA	8		3	11	
SPAIN	2	2		4	
UK	17	6	2	25	
USA	104	27	20	151	5
TOTAL	224	56	63	343	12

INFN PISA, 20 GIUGNO 2011

Pubblicazioni di fisica: da 420 a 466 rispetto a giugno 2010

Fits -> CKM mechanics dominates CPV phenomenology (from CKM 2010)

Essential contribution of B-factories

INFN PISA, 20 GIUGNO 2011

Ci sono alcune tensioni nel fit CKM (P.Paradisi, CKM 2010)

Several consistent $B \rightarrow \tau \nu$ measurements (B.Kowalewski, Beauty 2011)

- Purely leptonic decay, measures product $(f_B | V_{ub} |)^2$
- At least two missing neutrinos; *no kinematic constraints*
- Must reconstruct 2nd B meson, *veto* on any additional tracks or significant *calorimeter energy*

	$BF(B \rightarrow \tau v) \times 10^6$	
BaBar SL tag	$180 \pm 80 \pm 10$	arXiv:0809.4027
Belle SL tag	$154 \begin{array}{rrr} {}^{+38} {}^{+29} \\ {}^{-37} {}^{-31} \end{array}$	arXiv:1006.4201
BaBar had tag	$180^{+57}_{-54} \pm 26$	arXiv:1008.0104
Belle had tag	$179 \begin{array}{rrr} {}^{+56} {}^{+46} \\ {}^{-49} {}^{-51} \end{array}$	PRL 97:251802 (2006)
HFAG average	164 ± 34	

|V_{ub}| puzzle (U.Nierste, MoriondEW 2011)

new physics in

- $B^+ \rightarrow \tau^+ \nu_\tau$ or
- $A_{CP}^{mix}(B_d \rightarrow J/\psi K_S)$. \leftarrow easier!

 A_{sl}^{b} from D0 \gg than predicted by SM (M.Williams, FPCP 2011)

$$A^{b}_{sl} = [-0.957 \pm 0.251 \text{ (stat.)} \pm 0.146 \text{ (syst.)}] \%$$

This result differs from the SM prediction, $[-0.023 \pm 0.006]$ %, by ~3.2 σ .

Light NMSSM Higgs bosons not found in Y(3S) and Y(2S) decays

(Hiller hep-ph/0404220, Dermisek/Gunion/McElrath hep-ph/0612031)

Dark sector gauge bosons (dark matter candidates)

Models motivated by γ-ray and positron emission from the galactic center (INTEGRAL, PAMELA, ATIC, etc)

Dark matter particles in ~TeV range, but new gauge bosons in ~GeV range

Coupling to leptons due to small mixing between SM and DS

New gauge bosons decay to lepton pairs, anti-proton production forbidden by kinematics or suppressed → explains PAMELA/ATIC features

Search for low-mass states in e⁺e⁻ annihilation @ B-Factories

Dark sector gauge bosons not found in Y(3S) e Y(2S) decays

Look for $e^+e^- \rightarrow l^+l^-l^+l^-$ final states (4e, 2e, 2µ, 4µ) as a function of twolepton mass (Y.Kolomensky, Blois 2011) Full BaBar dataset (~540 fb⁻¹) 10⁻⁷ **SAR** BABAR arXiv:0908.2821 $BR(W' \rightarrow e^+e^-) = BR(W' \rightarrow \mu^+\mu^-)$ preliminary preliminary ⊣ È ≝10⁻° 806 120 a(e⁺e[·]→ WW[·]→ I⁺I⁺I⁺I⁺) 100 $\epsilon^2 \alpha_{\rm D,eff}$ 10⁻⁹ **10⁻¹⁰** 10⁻¹¹ 2 5 M(W') (GeV/c2) M(W') (GeV/c²) $\sigma(e^+e^- \to W'W' \to l^+l^-l'^+l'^-) < (25 - 60)$ ab

$e^+e^- \rightarrow$ hadrons processes cross-sections precisely measured with ISR events

Many rare(r) modes have been measured by BABAR (using the ISR technique), thus greatly reducing uncertainties in the determination of the dispersion integral.

Some rare modes are not known or incomplete, and must be estimated from known modes using isospin symmetry. (A.Hoecker, Tau 2010)

g-2 hadronic contribution calculation updated with BABAR measurements

responsabilità e tesi di dottorato a Pisa

- ♦ J.Walsh: Radiative *B* Penguin decays physics analysis co-convener
- N.Neri: Charm Physics physics co-convener
- ♦ A.L.: Tau Physics co-convener
 - HFAG-tau member
- Giulia Casarosa, tesi dottorato su D0-mixing
- Benjamin Oberhof, tesi dottorato su fisica del tau, Skim Manager

cambiamenti rispetto a luglio 2010

SuperB è stato approvato

→ accelerazione del passaggio di persone e percentuali da BABAR a SuperB

N.Neri diventa ricercatore a Milano

(Rad. *B* penguins) A_{CP} in $B \rightarrow X_s \gamma$ (SM prediction ~10⁻⁶)

(Rad. *B* penguins) $B^0 \rightarrow \gamma \gamma$ (SM prediction $3.1^{+6.4}_{-1.6} \cdot 10^{-8}$)

(Charm) D0-mixing – Dalitz method pubblicato, PRL 105, 081803 (2010)

(Charm) time-integrated A_{CP} in $D^+ \rightarrow K_s \pi^+$, pubblicato

(Charm) G.Casarosa, analisi in corso su D0-mixing, objettivo 5σ

D^o mixing and CPV with a Lifetime Ratio analysis

Experimental Situation:

Combining all the measurements of D⁰ mixing the no-mixing hypothesis is excluded with a confidence level equivalent to 10.2σ but no single measurement exceeds 5σ . There is no evidence of CPV in the charm sector.

Experimental observables sensitive to mixing and to indirect CPV [assuming no direct CPV and small mixing $(|x|, |y| \ll 1)$]

Mixing & indirect CPV observables

Decay channels:

- Tagged D⁰: $D^{*+} \rightarrow D^0\pi^+$; $D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$, $K\pi^-$
- Untagged D^0 : $D^0 \rightarrow K^+K^-$, $K\pi$

 $\tau_{\rm D} = D^0$ lifetime $\langle \tau(CP+) \rangle$ = effective D⁰ lifetime $y_{CP} = \frac{\tau_{D}}{\langle \tau(CP+) \rangle} - 1 \quad \& \quad \Delta Y = \frac{\tau_{D}}{\langle \tau(CP+) \rangle} A_{\Gamma} \qquad A_{\Gamma} = \frac{\tau(D^{0} \to CP+) - \tau(\overline{D^{0}} \to CP+)}{\tau(D^{0} \to CP+) + \tau(\overline{D^{0}} \to CP+)}$

> the 2 samples are statistically independent

 \rightarrow The most significant measurement (4.1 σ) of mixing is obtained combining the BaBar results using tagged and untagged samples.

(Charm) G.Casarosa, analisi in corso su D0-mixing, obiettivo 5 σ

Reduction of the statistical error

- → Reduction of statistical error:
 - → optimization of the selection \rightarrow + 80% signal efficiency
 - perform a simultaneous fit to tagged and untagged samples sharing the parameters of the signal resolution function.

simultaneous fit to the tagged samples (same lum. as prev. analysis):

(Tau) HFAG report published, HFAG-tau update Summer 2011

- averages accounting for correlations, updated external parameters biases & uncertainties
- arXiv:1010.1589v2 [hep-ex], arXiv:1101.5138v1 [hep-ex]
- V_{us} from $\tau \rightarrow s$ inclusive discrepancy persists

Personale e percentuali BABAR 2011 -> 2012

		/		
		2011	2012	
1	C.Angelini	50%	50%	p.o.
	G.Batignani	30%	0%	р.о.
	S.Bettarini	20%	0%	ric.
	G.Calderini	30%	0%	ric.
2	G.Casarosa	70%	70%	dott.
3	A.Cervelli	40%	40%	ass.ric.
	F.Forti	30%	0%	p.a.
	M.Giorgi	20%	0%	p.o.
4	A.Lusiani	60%	50%	ric.
	N.Neri	40%	0%	ric.
5	B.Oberhof	70%	70%	dott.
	E.Paoloni	20%	0%	ric.
	G.Rizzo	20%	0%	ric.
6	G.Triggiani	20%	20%	p.a. (da confermare)
7	J.Walsh	60%	50%	primo ric.
	FTE fisici	5.8	3.5	
	F.Donno	30%	?	tecn.
	G.Terreni	20%	?	tecn.
	FTE tecnologi dalla sezione	0.5	0.0	
	Totale FTE	6.3	3.3-3.5	(da finalizzare)

♦ richieste: solo metabolismo

Backup slides

 $B \rightarrow \tau \nu$ esclude ampio spazio di parametri di nuova fisica

