Update on Super Flavor Factory Marcello A. Giorgi

Pisa 20 Giugno 2011

June 20,2011

2

B_{u,d} physics: Rare Processes and Precision Measurements

- Goal: Reveal presence of New Physics (NP) using two-pronged attack:
 - Search for Rare Processes: NP contributions can be as large as Standard Model ones
 - Large sensitivity to NP
 - Ability to distinguish among NP models
 - Make Precision Measurements of many quantities: over constrain the Standard Model predictions
 - NP will often lead to discrepancies in global analyses of measured processes

will build on experience of current Bfactories.

Experimental ingredients:for time dependent CP asymmetries using quantum coherence

CKM constraints

measures the sides and angles of the Unitarity Triangle (UT)

- Many measurements constrain the sides and angles of the UT: the SM predicts that all measurements "intersect" at apex of the triangle
- When NP is present, the measurements do not yield a unique apex, but you need the high precision of a Super Flavour Factory.

ō

Charm @ SuperB

• $Run_{\beta\gamma=0.238} \alpha T(4S)$: $\mathcal{L} = 10^{36} \text{ cm}^{-2} \text{ sec}^{-1}$; $\int \mathcal{L} dt = 75 \text{ ab}^{-1}$ at the $\Upsilon(4S)$

✓ Large improvement in D⁰ mixing and CPV: factor 12 improvement in statistical error wrt BaBar (0.5 ab^{-1});

✓ time-dependent measurements will benefit also of an improved (2x) D⁰ propertime resolution. [\approx 1KHz of c c]

Unique feature of SuperB

- Run at $\psi(3770)$: $\mathcal{L} = 10^{35} \text{ cm}^{-2} \text{ sec}^{-1}; \quad \int \mathcal{L} dt = 500 \text{ fb}^{-1} \text{ at the } \Psi(3770)$
 - ✓ $D\overline{D}$ coherent production with 100x BESIII data and CM boost up to $\beta\gamma=0.9$; ✓ almost zero background environment;
 - ✓ possibility of time-dependent measurements exploiting quantum coherence.

• Two improvements in mixing precision come from threshold data: CAVEAT: NO TIME-DEPENDENT STUDIES INCLUDED YET

Charm at DD threshold

- Almost zero background analyses: search for rare/forbidden decays, precise measurement of relative D⁰-D⁰ strong phases, search for CPV in wrong sign (WS) semileptonic (SL) D⁰ decay modes.
- Unique possibilities of time-dependent measurements at DD threshold currently under study:
 - coherent production allows time-dependent measurements also withCPtagged events;
 - CP, T, CPT conservation tests similar to those in $K^0-\overline{K}^0$ and $B^0-\overline{B}^0$ systems;
 - measure of the unitarity triangle in the Charm sector.

POLARIZATION:Precision Electroweak

• $sin^2\theta_w$ can be measured with polarised e⁻

Measure LR asymmetry in

at the $\Upsilon(4S)$ to same precision as LEP/SLC at the Z-pole.

Can also perform crosscheck at $\psi(3770)$.

Is this measurement also possible with Charm?

- 1. @ Y(4S). But hadronization correction.
- 2. Operate at a ccbar vector resonance above open charm threshold $\Psi(3770)$, use the same analysis method as for b.

Polarization at low energies with high luminosity is needed

That is included in the SuperB design

Physics Coordination

Physics Coordin	ators: A.Bevan, M.Ciuchini, M.Rama, J.Walsh
Bd:	A. Stocchi,
Bs :	A. Drutskoy
Charm:	B.Meadows, N.Neri
Tau :	A.Lusiani, M. Roney
Spectroscopy&	Exotics : R.Faccini, A.Polosa
Interplay :	M.Ciuchini, L.Silvestrini

.....

Parameter	Requirement	Comment
Luminosity (top-up mode)	10 ³⁶ cm ⁻² s ⁻¹ @ Y(4S)	Baseline/Flexibility with headroom at 4. 10 ³⁶ cm ⁻² s ⁻¹
Integrated luminosity	75 ab ⁻¹	Based on a "New Snowmass Year" of 1.5 x 10 ⁷ seconds (PEP-II & KEKB experience-based)
CM energy range	au threshold to Y (5 <i>S</i>)	For Charm special runs (still asymmetric)
Minimum boost	βγ ≈0.237 ~(4.18x6.7GeV)	1 cm beam pipe radius. First measured point at 1.5 cm
e ⁻ Polarization Boost up to 0.9 in runs at low energy under evaluation for charm physics	≥80%	Enables τ <i>CP</i> and <i>T</i> violation studies, measurement of τ <i>g</i> -2 and improves sensitivity to lepton flavor-violating decays. Detailed simulation, needed to ascertain a more precise requirement, are in progress.

Future Super B Factories

	SuperB	Super KEKB
Peak Luminosity	>10 ³⁶	$0.8 \ge 10^{36}$
Integrated Luminosity	75 ab ⁻¹	50 ab ⁻¹
Site	Green Field	KEKB Laboratory
Collisions	mid 2016	2015
Polarization	80% electron beam	No
Low energy running	10 ³⁵ @ charm threshold	No
Approval status	Approved	Approved

Polarization resonances

- polarization resonances do constraint the beam Energy choice
- Plot shows the resonances in the energy range of LER
- Beam polarization computed assuming
 - > 90% beam polarization at injection
 - 3.5 minutes of beam lifetime (bb limited)
- From this plot is clear that the best energy for LER should be 4.18 GeV → HER must be 6.7 GeV

Synchrotron light options @ SuperB

- Comparison of brightness and flux from undulators for different energies dedicated SL sources & SuperB HER and LER
- Light properties from undulators better than most SL

Collider Parameters are "stable"

		Base Line		Low Emittance		High Current		Tau-charm	
Parameter	Units	HER LER (e+) (e-)		HER (e+)	HER LER (e+) (e-)		LER (e-)	HER (e+)	LER (e-)
LUMINOSITY	сш ⁻² s ⁻¹	1.00E+36		1.00E+36		1.00E+36		1.00E+35	
Energy	GeV	6.7 4.18		6.7 4.18		6.7 4.18		2.58	1.61
Circumference	ш	125	8.4	1258.4		1258.4		1258.4	
X-Angle (full)	mrad	6	б	66		66		66	
β _x @ IP	сш	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32
β _y @ IP	сш	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533
Coupling (full current)	96	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25
Emittance x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4
Emittance y	рш	5	6.15	2.5	3.075	10	12.3	13	16
Bunch length (full current)	mm	5	5	5	5	4.4	4.4	5	5
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766
Buckets distance	#	1	2		2		1	1	
Ion gap	96	2		2		2		2	
RF frequency	MHz	47	6.	476.		476.		476.	
Revolution frequency	MHz	0.2	38	0.238		0.238		0.238	
Harmonic number	#	1998		1998		1998		1998	
Number of bunches	Ħ	97	78	978		1956		1956	
N. Particle/bunch (10 ¹⁰)	#	5.08	6.56	3.92	5.06	4.15	5.36	1.83	2.37
$\sigma_{\rm x}$ effective	μm	165.22	165.30	165.22	165.30	145.60	145.78	166.12	166.67
σ _y @ IP	μш	0.036	0.036	0.021	0.021	0.054	0.0254	0.092	0.092
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15
Σ_{t} effective	μm	233	.35	233.35		205.34		233.35	
Σ _y	μш	0.0	50	0.030		0.076		0.131	
Hourglass reduction factor		0.950		0.950		0.950		0.950	
Tune shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080
Tune shift y		0.097	0.097	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910
Longitudinal damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.17
Momentum compaction (10 ⁻⁴)		4.36	4.05	4.36	4.05	4.36	4.05	4.36	4.05
Energy spread (10 ⁻⁴) (full current)	dE/E	6.43 7.34		6.43 7.34		6.43 7.34		6.43 7.34	
CM energy spread (10*)	dE/E	5.0		5.0		5.0		5.0	
Total lifetime	min	4.23	4.48	3.05	3	7.08	7.73	11.4	6.8
Total RF Wall Plug Power	MW	16	.38	12.37		28.83		2.81	

SUPERB COLLIDER PROGRESS REPORT

Possible layout @ Tor Vergata

FF vibrations budget

K. Bertsche

 An overall vibration control design is being developed for the FF magnets. The added measurements of the Frascati site are very encouraging and the fact that the beams tend to move together with QD0 motion has significantly loosened the tolerance requirements on cryostat motion

Element	RMS	Xfer Fn	IP displacement		
	mouon		no	with	
			feedback	feedback	
Cryostat linear	< 1 µm	< 0.035	< 35 nm	< 3.5 nm	
Cryostat rotation	< 2 μ rad	0.014 m/rad	< 30 nm	< 3 nm	
Arc quads	< 1 µm	0.03	< 30 nm	< 3 nm	
Total (two rings)			< 78 nm	< 7.8 nm	

- Assumes beam feedback achieves > 10x reduction of motion at IP
 - If motion is kept 10x smaller, may not need beam feedback
- Budget applies to integrated RMS motion > 1 Hz
- June 20,2011• This budget will keep relative Amotion < 8 nm, and lumi loss < 1%

Vibrations

The results of the measurement campaign in Tor Vergata by the Lapp-Annecy Group at the end of April2011 indicates that vibration is not a problem for SuperB even in rush hours. (Well below 1.0 µm amplitude)

Final Quad (QD0) Design: 2 possible choices

Vanadium Permendur "Russian" Design

Air core SC QD0, QF1 "Italian" Design

0

m

-1

HER QD0

QD0

PM

QF1

-2

Solenoids-

1

QF1

ER

2 M. Sullivan March, 13, 2010 SB_RL_V12_SF8A_3M

3

Prototype in construction Min. thickness

0.57

Outer winding

Inner winding

Field generated by 2 double helix windings in a grooved Al support

Current adductors

- small space available for the super conductor (SC) and for the thermal stabilization material (Cu+Al)
- the margin to quench is small, however the energy stored by the magnet is small (Inductance ~ 0.3 mH) and a accidental SC to NC transition should not damage the magnet
- A single quadupolar magnet is under construction to determine:
 - the maximum gradient (current) the magnet can safely handle @ 4.2 K
 - the field quality at room temperature
- 200 m of SC wire kindly gifted by Luvata: Φ =1.28 mm, Cu/NbTi = 1.0, Ic 2450 A @ 4T, 4.2K

June 20, P.1 Fabbricatore, S. Farinon, R. Musenich (Genova) Paoloni (Pisa)

Courtesy Mauro Perrella (ASG Genova)

Inner-Outer

iunction

cross section

Luvata strand cross section

The QD0

Grooved Al support

Ready this Summer for tests and field measurements @ CERN

June 20,2011

M.A.Giorgi

Detector Overview

- Detector design well advanced
 - Based on BaBar "prototype"
 - CDR (2007) <u>http://web.infn.it/superb/images/stories/upload_file/superb-</u> <u>cdr.pdf</u>
 - Detector Progress Report(2010): http://arxiv.org/abs/1007.4241
- Remaining Generic Detector Options to be decided following Detector Geometry Task Force reports and DGWG studies
- Proto-Detector Organization is in place. Needs to be enhanced/modified as collaboration develops.
- R&D ongoing across detector systems allow final designs to proceed.

SuperB Detector (with options)

Detector Evolution- from

- CDR Baseline based on BaBar. It reuses
 - Fused Silica bars of the DIRC
 - DIRC & DCH Support
 - Barrel EMC CsI(TI) crystals and mechanical structure
 - Superconducting coil & flux return (with some redesign).
- Some elements have aged and need replacement. Others require moderate improvements to cope with the high luminosity environment, the smaller boost (4x7 GeV), and the high DAQ rates.
 - Small beam pipe technology
 - Thin silicon pixel detector for first layer, and a new 5 layer SVT.
 - New DCH with CF mechanical structure, modified gas and cell size
 - New Photon detection for DIRC fused silica bars
 - Possible Forward PID system (TOF in Baseline option)
 - New Forward calorimeter crystals (LYSO).Backward veto
 - Minos-style extruded scintillator for instrumented flux return
 - Electronics and trigger- x100 real event rate
 - Computing- to handle massive date volume

Background Rates as expected from preliminary studies

	Cross section		Rate	Generator
Radiative Bhabha	~340 mbarn (Eγ/Ebeam > 1%)	~850	0.3THz	BBBrem
e⁺e⁻ pair production	~7.3 mbarn	~18	7GHz	Diag36
e ⁺ e ⁻ pair (seen by L0 @ 1.5 cm)	~0.3 mbarn	~0.8	0.3GHz	Diag36
Elastic Bhabha	O(10 ⁻⁴) mbarn (Det. acceptance)	~250/Million	100KHz	Bhabhayaga/B Hwide
Y(4S)	O(10⁻ ⁶) mbarn	~2.5/Million	1 KHz	
	Loss rate	Loss/bunch pass	Rate	
Touschek	14 kHz / bunch	~6/100	~14 MHz	Star (M.Boscolo)

- Primary Background Particle will eventually hit the beam pipe showering in the surrounding material
- Ad hoc Monte Carlo generator for primary particles
- Geant4 Based full simulation code for the simulation of the interaction of primary particles with the material

Proto Technical Coordination

Detector Coordinators – B.Ratcliff, F. Forti Technical Coordinator – W.Wisniewski

- SVT G. Rizzo
- DCH G. Finocchiaro, M.Roney
- PID N.Arnaud, J.Vavra
- EMC F.Porter, C.Cecchi
- IFR R.Calabrese
- Magnet W.Wisniewski
- Electronics, Trigger, DAQ D. Breton, U. Marconi
- Online/DAQ S.Luitz
- Offline SW
 - Simulation coordinator D.Brown
 - Fast simulation M. Rama
 - Full Simulation/Computing F. Bianchi
- Background simulation M.Boscolo, E.Paoloni
- Rad monitor –
- Lumi monitor –
- Polarimeter -
- Machine Detector Interface –
- Mechanical Integration Team F. Rafelli, W. Wisniewski, System Reps
- Central Electronics Team -
- +DGWG A. Stocchi, M. Rama
- +Geometry Selection Task Forces- H. Jawahery, W. Wisniewski

Mechanical integration

- List of reference persons and institutions for the mechanic of the sub detectors.
- Review of the mechanical interfaces.
- Detector and sub detector envelopes.
- Review of transportation equipments.
- Review of installation tooling.
- Service inventory survey.
- Storage area.
- Drawings and documents repository.
- Organization of integration management

People and jobs

- •IFR Massimo Benettoni INFN Pd,Vito Carassiti INFN Fe •EMC Corrado Gargiulo INFN Rm1
- •Solenoid Magnet Pasquale Fabbricatore INFN Ge
- •**PID** Massimo Benettoni,INFN Pd(SLAC + Pd+ Ba)
- •DCH (LNF + INFN Le+ McGill Montreal)
- •SVT Filippo Bosi INFN Pi, (U.K. (Queen Mary))
- •Forward PID (between France)
- •Backward IMC
- Machine interface

Whole detector

•The interface with whole detector are the assembly and interaction halls.

•Soon we must define the envelope and total weight of all SuperB detector.

•The contact of SuperB detector with the hall is with the sliding system and the supporting feet. (strategy on positioning)

•The Interaction of the detector with the acceleration is very important because we carry some machine interfaces that requires additional requirements in term of precision, mechanical stability may be more stringent of the detector itself and additional services.

IFR versus superconducting solenoid

LK_021

Solenoid Mapper (Forward Doors Open)

06/03/98

The use of a new cryogenic system can have an impact on integration. IFR can have a difference services.

Super conducting solenoid to EMG

Adjustment are build on the connection

F.Raffaelli

EMG to DCH

A new chamber could have the same interface with the EMC, if this is satisfactory.

Mechanical interface.

- Whole detector in the collision hall.
- IRF versus superconducting solenoid.
- Super conducting solenoid to EMC.
- EMC to DCH.
- DHC to SVT.
- SVT to machine interface.
- DHC to SVT and SVT to the machine.
- Fit services of IFR- Super conducting solenoid in the same space as Babar

Dismounting activity

- The last item to be dismounted is the IFR. Starting the disassembly beginning of July.
- It should be very important to attend to all phase of the operation because we can learn the mounting procedure in detail.
- Right now we base our knowledge on photographic archive.
- From this photographic archive we can get and idea of the connection between the various elements.

Preparation of TDR INFR/AE_10/2, LAL-12

SuperB Progress Reports

Physics

arXiv:1008.1541v1

SuperB Progress Reports

The Collider

arXiv:1007.4241

SuperB Progress Reports

> Physics Accelerator Detector

arXiv:1009.6178v1

SuperB Progress Reports have been published, it was an important step forward to the completion of the TDR before 2012. Machine parameters are fixed including the tunnel length. MAC expected by end 2011. A new Physics Comparison Document ready by July 1, 2011.

The XVII SuperB Workshop and Kick off Meetiing

		11:00 SML 30 30 30	PLENARY KICK-OFF DAY Status of the SuperB Project (R.Petronzio) SuperB e il Piano Nazionale della Riberca (A.Agostini) SuperB nel Campus dell'I Iniversità	KIC	K-OF	F DAY	
		30	di Tor Vergata (P.Masi) SuperB as High Brilliance Light Source (E. Di Fabrizio)			Tuesday,May	<mark>/ 31, 2011</mark>
		13:30	Lunch - Fuoco di Bosco	7	15.30	Special MINI-PLENARYY	
		30	KICK-OFF DAY The European Strategy Session and the New Particle Physics Roadmap (S. Stapnes) Super Flavour Collires and ECFA (T. Nakada)	<u>.</u>			
				=			
17:00	The	ELHC(B) Discovery Potential (20')	(ो Slides 🔁)		Guy Wilkinso	on (University of Oxford)
17:20	120 The Super-KEKB and Belle-II Projects (20) (Slides Slides) Peter Krizan (Ljubljana Univ. and J. Stefan Institute)						
17:40	^{:40} The BINP Super Tau-Charm Factory (20) (🖮 Slides 🖾)					Vladimir Druzhinin (<i>BI</i> N	IP, Novosibirsk, Russia)
18:00	.00 The BES-III Project (201) (🖮 Slides 🚺) Hai-Bo Li						Hai-Bo Li
		18:45 SML	PLENARY Experiment Collaboration Forming				