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Motivations

Predictions of hadronic amplitudes, decay rates, spectral densities
important tests of the Standard Model

(g − 2)µ based e.g. on γ → π+π−, π0 → γγ
test of CP violation in K, D decays

improve our understanding of strong interactions
properties of resonances like ρ0
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(g − 2)µ: Dispersive approach
Method

aµ = α

π

∫
ds

s
K(s,mµ) ImΠ(s)

π
[Brodsky, de Rafael ’68]

analyticity Π̂(k2) = Π(k2)−Π(0) = k2

π

∫ ∞
0

ds
ImΠ(s)

s(s− k2 − iε)

unitarity

=
∑

X
Im X

2 4π2α

s

ImΠ(s)
π

= σe+e−→γ?→had

At present O(30) channels: π0γ, π+π−, 3π, 4π,K+K−, · · ·
K(s,mµ)→ π+π− dominates due to ρ resonance
ππ channel is ∼ 70% of signal and ∼ 70% of error

2 / 22



(g − 2)µ: Dispersive approach
Tensions in π+π− channel

Large tensions among experiments: BaBar, KLOE, now CMD3

[CMD3 2302.08834]
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Figure 36: The ⇡+⇡�(�) contribution to ahad,LO
µ from

energy range 0.6 <
p

s < 0.88 GeV obtained from this
and other experiments.

Experiment a⇡
+⇡�,LO

µ , 10�10

before CMD2 368.8 ± 10.3
CMD2 366.5 ± 3.4
SND 364.7 ± 4.9
KLOE 360.6 ± 2.1
BABAR 370.1 ± 2.7
BES 361.8 ± 3.6
CLEO 370.0 ± 6.2
SND2k 366.7 ± 3.2
CMD3 379.3 ± 3.0

Table 4: The ⇡+⇡�(�) contribution to ahad,LO
µ

from energy range 0.6 <
p

s < 0.88 GeV ob-
tained from this and other experiments.

in Table. 4, where the first line in the table corresponds to the combined result of all
measurements before CMD-2 experiment.

The pion formfactor mesuarements from the di↵erent RHO2013 and RHO2018 seasons
of the CMD-3 give the statistically consistent result in the ahad,LO

µ integral as:

a⇡⇡,LO
µ (RHO2013) = (380.06 ± 0.61 ± 3.64) ⇥ 10�10

a⇡⇡,LO
µ (RHO2018) = (379.30 ± 0.33 ± 2.62) ⇥ 10�10

a⇡⇡,LO
µ (average) = (379.35 ± 0.30 ± 2.95) ⇥ 10�10 (18)

Two CMD-3 values are in very good agreement in spite of a very di↵erent data taking
conditions (as was discussed earlier). The combined CMD-3 result was obtained in very
conservative assumption of 100% correlation between systematic errors of two data sets. The
CMD-3 result is significantly higher compared to other e+e� data, both energy scan and ISR.
Although this evaluation was done in the limited energy range only and the full evaluation
of ahad,LO

µ is yet to be done, it is clear that our measurement will reduce tension between
the experimental value of the anomalous magnetic moment of muon and its Standard Model
prediction.

9. Conclusions

The measurement of e+e� ! ⇡+⇡� cross section was performed by the CMD-3 exper-
iment at the VEPP-2000 collider in the energy range

p
s = 0.32 ÷ 1.2 GeV in 209 energy

points. The analysis was based on the biggest ever used collected statistics at ⇢ resonance
region with 34 ⇥ 106 ⇡+⇡� events at

p
s < 1 GeV. The large statistics allows to study the

possible systematic e↵ects in details. The development of the analysis strategy, cross-checks

42

very difficult to combine different experiments
what is the error of ππ contribution to aµ?
motivates even more first-principles Lattice QCD calculations
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Lattice field theories

lattice spacing a → regulate UV divergences
finite size L → infrared regulator

Continuum theory a→ 0, L→∞

Euclidean metric → Boltzman interpretation
of path integral }a

L

〈O〉 = Z−1
∫

[DU ]e−S[U ]O(U) ≈ 1
N

N∑
i=1

O[Ui]

Very high dimensional integral → Monte-Carlo methods
Markov Chain of gauge field configs U0 → U1 → · · · → UN
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1. Inverse problems and smeared spectral densities

2. Finite-volume effects on smeared spectral densities

3. Θ correlators and the Maiani-Testa problem
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Analytic continuation

Time-momentum representation very natural for Lattice QCD
project operator O to definite spatial momentum
evaluate C(t) = 〈O(t)O(0)〉

+ Physical observables as integrals of spectral densities
P =

∫
dω κ(ω) ρ(ω)

e.g. inclusive diff. decay rate semileptonic [Gambino, Hashimoto ’20]

+ Correlator is integral of spectral density C(t) =
∫
dωe−ω|t|ρ(ω)

= Solve P =
∫
dt f(t)C(t) for unknown f?
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Inverse problems

Take L =∞, a = 0 but C(t) only known on set {t1, t2 · · · }
is it possible ρ(ω) =

∑
t gtC(t)?

C(t) finite discrete Euclidean times
cannot extract continuous ρ(ω)
ρσ(ω) =

∫
dω′ ρ(ω′) δσ(ω′ − ω)

δσ(x) = σ/π
x2+σ2

smooth Dirac δσ

Note that we whe have introduced the matrix A

Att0 =

Z +1

E0

dEbT (t + a, E)bT (t0 + a, E)

= I0(E0, t + t0 + 2a) + I0(E0, T � t + t0) + I0(E0, T + t � t0) + I0(E0, 2T � t � t0 � 2a) ,

(149)

where I0(E, t) = e�Et

t and the vector ~f , ~R are defined as,

ft =

Z +1

E0

dEbT (t + a, E)�(E; {Ec, �}) (150)

The vector ~R is the same as in eq. (146) The problem of determining the ~g
coe�cients is a linear algebra problem. Defining A in the case where bT (t, E)
are the basis function specified in eq. (141) we obtain the results reported
in fig. (9) with smearing kernel chosen as the gaussian ”bell” distribution:

�(E; {Ec, �}) =
e�

(E�Ec)2

2�2

R +1
0 e�

(E�Ec)2

2�2

.

Figure 9: aEc = 0.45, a� = 0.1 and aE0 = 0

41

let’s reformulate the question ... is it possible ρσ(ω) =
∑
t gtC(t)?

problem remains ill-posed, but solution admitted

Ansatz
∑
t gte

−ωt = κ′(ω) →
∑
t gtC(t) =

∫
dω κ′(ω) ρ(ω)

minimize
∫
dω[κ′(ω)− κ(ω)]2 w.r.t. gt

for finite set of time slices κ′ 6= κ
but not always a problem [Boito et al]
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Approximate solutions
Sketch

Ansatz
∑
t gte

−ωt = κ(ω) →
∑
t gtC(t) =

∫
dω κ(ω) ρ(ω)

1. minimize L2 norm
∫
dω
[∑

t gte
−ωt − κ(ω)

]2
2. define A(t, t′) =

∫
dωe−ω(t+t′) , f(t) =

∫
dωκ(ω)e−ωt

3. solution is gt =
∑
t′ [A−1]t,t′f(t′)

Note that we whe have introduced the matrix A

Att0 =

Z +1

E0

dEbT (t + a, E)bT (t0 + a, E)

= I0(E0, t + t0 + 2a) + I0(E0, T � t + t0) + I0(E0, T + t � t0) + I0(E0, 2T � t � t0 � 2a) ,

(149)

where I0(E, t) = e�Et

t and the vector ~f , ~R are defined as,

ft =

Z +1

E0

dEbT (t + a, E)�(E; {Ec, �}) (150)

The vector ~R is the same as in eq. (146) The problem of determining the ~g
coe�cients is a linear algebra problem. Defining A in the case where bT (t, E)
are the basis function specified in eq. (141) we obtain the results reported
in fig. (9) with smearing kernel chosen as the gaussian ”bell” distribution:

�(E; {Ec, �}) =
e�

(E�Ec)2

2�2

R +1
0 e�

(E�Ec)2

2�2

.

Figure 9: aEc = 0.45, a� = 0.1 and aE0 = 0

41

A−1 ill-conditioned matrix
→ 1e32 y-axis

coefficients useless in practice ↔
stat. errors
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Regulators
[MB, Giusti, Saccardi Hadron23]

Regularization by suppressing
small eigenvalues of A
W = A+B
Btt′ = λδtt′ [Tikhonov]
Btt′ ∝ covtt′ [HLT ’19]
sparsening of A [Boito et al]

stat. errs down
syst. errs up
tuning required...
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Outlooks

Open questions I am working on
syst. errors from regularization
of inverse problem
signal-to-noise problem in ρσ?
multi-level useful?

[MB, Giusti, Saccardi Hadron23]
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1. Inverse problems and smeared spectral densities

2. Finite-volume effects on smeared spectral densities

3. Θ correlators and the Maiani-Testa problem
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Finite volume
Quantization of spectrum

Lattice Simulations performed in finite box L3 × T (T large)
periodic BC ~p = 2π

L ~n, ~n ∈ Z3

→ spectrum quantized

L → ∞

Hamiltonian ĤL (on slice L3), momentum operator P̂i
Hilbert space ĤL|n, ~p〉L = En(~p, L)|n, ~p〉L

scattering? decay rates?
what is meaning of |n, ~p〉L and En(~p, L)?
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QFT in a finite box
Lüscher formalism

1. s-channel one-loop diagram∫
dk0
2π
∫

d~k
(2π)3

iz(k)
k2−m2+iε

iz(P−k)
(P−k)2−m2+iε∫

dk0
2π

1
L3

∑
~k

iz(k)
k2−m2+iε

iz(P−k)
(P−k)2−m2+iε

2. evaluate integral-sum difference w/ Poisson’s formula
non-analytic function → 1/Ln corrections, i.e. loop legs on-shell

analytic function → e−mL corrections, i.e. loop legs off-shell

3. re-sum all 2→ 2 diagrams
2→ 4 diagrams 1/Lk correction if

√
s > 4m

quantization condition Q(En) = nπ
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Spectral decomposition

EM current Jµ, projected to momentum ~p

〈Jµ(t, ~p)Jµ(0, ~p)〉 =
∑
n

|〈0|Jµ(0)|n, ~p〉L|2e−En(L)t

0 500 1000 1500
ω [MeV]

δ(ω − 5Mπ,∆ = Mπ)

ρ(ω)

matrix elements 1/Lk finite vol. effects
smeared δσ → smeared ρσ FV
O(e−σL)?
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Smeared spectral densities
Finite volume effects

Scalar current J projected to zero-momentum
ρ(ω) = 〈0|Ĵ δ(Ĥ − ω) δ3(~P ) Ĵ |0〉 , ρ(ω|L) =

∑
n

δ(ω − En)|〈0|Ĵ |n〉L|2

Goal: finite volume effects of ρκ =
∫
dω ρ(ω)κ(ω) [MB, Hansen in prep]

κ(ω) = e−ωt: correlator (checks w/ literature)
κ(ω) = δσ(ω − E): smeared ρσ
κ(ω) = Θ(ω − E,∆)e−(ω−E)t: Θ correlators [MB, Hansen ’20]

Setup of our derivation:
1. restrict to two-particle form factor Fπ = 〈0|Ĵ |ππ〉
2. lowest partial wave Q(E,L) = δ0(E) + ϕ(E,L)
3. applicable to I = 1 vector-vector channel

Our work builds upon [Lellouch-Lüscher ’00][Hansen-Sharpe ’12][...]
[Bulava, Hansen, Hansen, Patella, Tantalo ’21]
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Sketch of derivation
MB, Hansen 23xx.yyyy

Quant. condition function Q(E,L) s.t. Q(En, L) = nπ

1. ρ(En|L) = |〈0|Ĵ |n〉L| =
ρ(En)

Q(1,0)(En, L)
Lellouch-Lüscher factor

2.
∫
dE ρ(E|L)κ(E) =

∑
n

∫
dE

ρ(E)
Q(1,0) δ(E − En)κ(E)

=
∑
n

∫
dE δ(nπ −Q(E,L))ρ(E)κ(E)

3. Poisson’s summation formula
∑
n δ(nπ −Q)→

∑
k e

2iQk

3.1 perform change of variables E = 2
√
m2
π + p2

4. Analytically continue p to p+ iµ in complex plane
4D proof that e2iφ ' eipL
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Finite volume effects
MB, Hansen 23xx.yyyy

ρκ(L)− ρκ →
∫
R+iµ

dp
p2

p2 +m2
π

e2iQ(ω) e−E(p)t

p

Δ Γ

imπ

Mℰ

ℝ + iμ

E(p) = 2
√
m2
π + p2

e2iQ(ω) ' eipL → e−µL

how large µ?

Finite-vol effects driven
by analytic structure of

E(p)
|Fπ(ω(p))|2
κ(ω(p))
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1. Inverse problems and smeared spectral densities

2. Finite-volume effects on smeared spectral densities

3. Θ correlators and the Maiani-Testa problem
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A simple observation
Maiani-Testa theorem

〈π, ~q1|π̃~q2(0) e−(Ĥ−2ω~q)t2 J(0)|0〉 [Maiani-Testa ’90]

〈π, ~q1|π̃~q2(0) Θ(Ĥ − 2ω~q,∆)e−(Ĥ−2ω~q)t2 J(0)|0〉 [Bruno-Hansen, ’20]

smooth Θ, smearing width ∆
tames growing exponentials in 2Mπ < E < 2ω~q

combination of Θ and exponential → localization in energy ω
like Maiani and Testa we want analytic control by expanding t2
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Spectral densities
Preliminary

G(t) =
∫
d3~x 〈J(t, ~x)J(0)〉 = 〈J̃~q(t)J(0)〉 =

∫ ∞
2m

dω e−ωt ρ(ω2)

1. smooth Θ function
GΘ(t|E) = 〈J̃~0(0) e−(Ĥ−E)t Θ(Ĥ − E ,∆) J(0)〉

2. large t expansion: localize “right shoulder”
GΘ(t|E) =

∑
n rnIn(t, E ,∆) [MB APLAT’21]

0.5 1.0 1.5 2.0 2.5

t/mπ

10−4

10−3

10−2

10−1

100

101

In
(t
,√

s,
∆

)

n = 0

n = 3

√
s = 5mπ

∆ = 0.5mπ

∆ = 0.7mπ

∆ = 0.1mπ In analytic functions
asymptotic series

rn free fit parameters

r0 ≡ ρ(s = E2)

rn all physical ↔ ∂ns ρ
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Proposed numerical strategy

[MB, Hansen ’20][MB APLAT ’21]
In a finite-volume GΘ(t) =

∑
n Θ(En − ω,∆)cne−Ent

1. build GΘ from original G
i. GEVP large set of operators → first N states

GΘ(t) = G(t)−
∑N
n=0 cnΘ(ω − En,∆) e−Ent

ii. numerical reconstruction of GΘ a lá Backus-Gilbert

2. fit GΘ, t ∈ [tmin, tmax] using In basis functions
similar numerical complexity of syst. error from excited states

3. fixed t GΘ(t) is a smeared spectral density
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Conclusions
Smeared spectral densities ρσ have physical meaning

σ � 0 needed to control finite-vol effects
is σ ' 0 really needed for physics?

e.g. CMD3 vs BaBar vs KLOE σ ' mπ likely sufficient!
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Thanks for the attention
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