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Polyakov loop and center symmetry

Finite temperature SU(N) theories enjoy a ZN

symmetry known as center symmetry

On the lattice

Apply a center symmetry transformation:
multiply all the x4 = 0 time-like link variables
by V = exp(i2kπ/N) ∈ ZN , i.e.
U4(x⃗ , 0) → VU4(x⃗ , 0)

The Polyakov loop, L, is defined as

L(x⃗) =
1

Nc
Tr

[
Nt∏

x4=0

U4(x⃗ , x4)

]

Under center symmetry transformations

L → VL
x4 = 0

x4 = Nt

L
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Deconfinement in SU(N) theories

If the center symmetry is exactly realized (top
panel): ⟨L⟩ = 0

Since, being F the free energy of a static
colored source, ⟨|L|⟩ ∝ exp(−F/T ), exact
realization of the center symmetry is
interpreted as confinement

At high temperature, the center symmetry
spontaneously breaks and L acquires a non
zero expectation value (deconfinement, bottom
panel)

In 3+1 D, the deconfinement phase transition
is first order for N ≥ 3

Tc(N)√
σ

= 0.5970(38) +
0.449(29)

N2

[arXiv:hep-lat/0307017]
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Topology on the lattice

At infinity (in R4) the gauge field must be Aµ ≃ Ω−1∂µΩ to have finite action.
One or more SU(2) subgroups can wind non trivially around the S3 sphere at infinity

The winding number Q (topological charge) can be written as

Q =

∫
d4x q ≡

∫
d4x

g2

32
ϵµνρσ Tr [FµνFρσ]

On the lattice we used the clover discretization of q which is CP
odd by construction

qclov =
1

29π2

±4∑
µ,ν=±1

ϵµνρσ Tr [ΠµνΠρσ]

Qclov is related to Q by a finite renormalization [arXiv:1109.6815]

µ

ν

ΠµνΠ(−µ)ν

Π(−µ)(−ν) Πµ(−ν)
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Topological features at the critical point

Topological features change in
correspondence of the deconfinement
transition [arXiv:1309.6059]

χ =

〈
Q2

〉
V

In the limit of large N, χ at zero
temperature is finite
(Witten-Veneziano solution to the U(1)
problem)

For T < Tc , χ is approximately constant
Image from arXiv:1309.6059

In the deconfined phase χ is suppressed exponentially in N
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Topological features at the critical point

For T < Tc : topological feature similar
to T = 0

For T > Tc : rapidly approach to the
prediction of Diluted Instanton Gas
Approximation (DIGA)

DIGA allows to predict moments of the
distribution of Q beyond χ at high
temperature

Image from arXiv:1309.6059

Also DIGA is in agreement with the exponential suppression of χ in the large N limit
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The θ-T phase diagram

Let us introduce the topological charge density
in the Lagrangian, coupled to a parameter θ:

q =
g2

32
ϵµνρσ Tr [FµνFρσ]

The Gibbs weight of a field configuration will
be multiplied by a phase exp(iθQ), with Q ∈ Z

Since θ alters the distribution of Q, it is
natural to think that it will alter the
deconfinement temperature, Tc

Physical quantities are even functions of θ
because q is CP odd while LYM is even

Conjectured θ-T phase diagram
from arXiv:1306.2919

We will be mainly interested in the curvature R of the deconfinement transition line in the θ-T
phase diagram: Tc(θ) = Tc(0) [1− Rθ2 + O(θ4)]
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The θ-T phase diagram

Since θ is coupled to Q ∈ Z in the action, θ dependence is
2π-periodic

In the large N limit we expect the free energy to be a
function of the kind

f (θ) = N2h(θ/N) ≃ N2 f̄ (0) +
1

2
χ min

k
(θ + 2kπ)2

In the confined phase (χ ̸= 0), this means first order phase
transition a θ = (2k + 1)π.
Unfortunately large real values of θ are hard to simulate
(sign problem)

Similarity with the dependence on an imaginary chemical
potential in a theory with fermions

Conjectured θ-T and µB -T phase diagrams
from arXiv:1306.2919
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Computing R from imaginary-θ simulations

10.63 10.64 10.65 10.66 10.67 10.68 10.69
β

2

4

6

8

χ
L

N = 4, Nt = 5, Ns = 20

θL = 0

θL = 15

θL = 20

We can find the critical temperature for different imaginary values of θ = iθI
then perform a fit assuming

Tc(θI )/Tc(0) = 1 + R θ2I
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A Clausius-Clapeyron-like equation

f (T , θ) =

{
fc(T , 0) + 1

2χcθ
2 + O(θ4) T < Tc

fd(T , 0) + 1
2χdθ

2 + O(θ4) T > Tc

At the phase transition the two vacua cross:

fc(Tc(θ), θ) = fd(Tc(θ), θ)

Using Tc(θ) = Tc(0)[1− R θ2] and expanding up to O(θ2):

Tc
T

−
f

fc(Tc(0)[1− R θ2], 0) +
1

2
χc θ

2 = fc(Tc(0)[1− R θ2], 0) +
1

2
χc θ

2

������
fc(Tc(0), 0) + Tc(0) sc R θ2 +

1

2
χc θ

2 = ������
fd(Tc(0), 0) + Tc(0) sd R θ2 +

1

2
χd θ

2

R =
χc − χd

2Tc(0) (sd − sc)
≡ ∆χ

2∆ϵ

where sc/d is the entropy (−∂f /∂T ) at θ = 0, T = Tc of the confined/deconfined phase
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Lattice computation of ∆ϵ and ∆χ

∆ϵ and ∆χ can be computed from
θ = 0 simulations at T = Tc ,
separating the sampled
configurations between the two
phases, setting two cut-offs on |L|

In [arXiv:2212.08684] the
Clausius-Clapeyron-like equation
was verified for SU(3):
R (from latent heat) = 0.0168(27),
in agreement with
R (from imaginary-θ) = 0.0178(5)
found in [arXiv:1205.0538]
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Lattice computation of ∆ϵ and ∆χ

If the volume is large enough (at
least for N > 3), the system will
not tunnel between the two phases
and it is possible to sample each
phase separately
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SU(4) results

0 1/521/621/82

1/N 2
t

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

R

N = 4

Latent heat

Imaginary-θ
N = 4

Latent heat Imaginary-θ

Ns Nt R =
∆χ

2∆ϵ
R (from fit)

20 5 0.01489(36) 0.0202(4)
36 6 0.01385(67) 0.0165(5)
48 8 0.0131(14) 0.0140(8)

cont. 0.0095(11) 0.0119(16)

Combined fit: 0.01025(92),
χ2/n d .o.f . = 2.3/3, p-value = 52%
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SU(6) results

0 1/521/621/82

1/N 2
t

0.000

0.002

0.004

0.006

0.008

0.010

R

N = 6

Latent heat

Imaginary-θ

N = 6

Latent heat Imaginary-θ

Ns Nt R =
∆χ

2∆ϵ
R (from fit)

10 5 0.00703(22) 0.00948(50)
12 6 0.00614(37) 0.00800(50)
16 8 0.00608(39) 0.00598(39)

cont. 0.00524(61) 0.00385(75)

Combined fit: 0.00469(47),
χ2/n d .o.f . = 3.18/3, p-value = 37%

For Nt = 8 the parallel tempering on
boundary conditions was exploited
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Large N scaling and comparison with Latent Heat

0 1/31/41/6
1/N

0.000

0.005

0.010

0.015

0.020

0.025

R

1/N2 fit (latent heat)

1/N2 fit (imaginary-θ)

Latent heat − [arXiv:2212.08684]

Latent heat − This work

Imaginary-θ − [arXiv:1205.0538]

Imaginary-θ − This work

Both determinations lead to a very
precise 1/N2 scaling, N ≥ 3

R(N) =
0.177(14)

N2
, (from latent heat)

R(N) =
0.159(4)

N2
, (from imaginary-θ)

In the large N limit one could use

∆ϵ/T 4
c from [arXiv:hep-lat/0206029]

χ(T = 0)/σ2 from [arXiv:0803.1593]

Tc/
√
σ from [arXiv:hep-lat/0502003]

And estimate

R =
0.253(56)

N2
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Conclusions

From the imaginary-θ fit method we found

R(N) =
0.159(4)

N2

Results from latent heat method are compatible (after taking the continuum limit)
This is consistent with our interpretation of the role of topology in the deconfinement
transition

Results of SU(3) are already consistent with the large N scaling within our uncertainties
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Some results on the distribution of Q

At high temperature, DIGA leads to
f (T , θ) ≈ f (T , 0) + χ(T )(1− cos(θ)) and
χ(T ) ≈ T 4 exp

(
−8π2/g2(T )

)
∼ T−11Nc/3+4

The coefficients in the expansion
f (θ) = f (0) + (1/2)χQθ

2 (1 +
∑

b2iθ
2i ) are determined

in particular b2 = −1/12 in the high T limit

In the confined phase
χ

σ2
= 0.0221(14) +

0.055(18)

N2

[arXiv:hep-th/0204125]

In this phase b2i coefficients scale as N−2i

b2 = −0.23(2)/N2
c + O(N−4) [arXiv:1309.6059]

Images from arXiv:1309.6059
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Topology on the lattice: smoothing

Qclov has in general non-integer values
Indeed it is affected by UV fluctuations
Those can be removed for example with
the cooling procedure
We performed 50 cooling steps on each
configuration, but the results are stable
after ∼ 10

The topological charge Qcold of the cooled
configuration is still not an integer, but its
histogram presents peaks close to integer
values
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Qclov

0

2000
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10000
15 cooling steps

10 cooling steps

5 cooling steps

0 cooling steps

We considered as the actual topological charge Qint = round(αQcold)
where α minimizes

∑
(Qint − αQcold)

2

The actual charge Q is related to Qclov (coupled to θL): Qclov ≈ ZQ

Z depends on β and can be computed at 0 temperature as Z (β) =
⟨QclovQint⟩β
⟨Q2

int⟩β
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Imaginary theta systematics

Especially on coarse lattice, Tc corrections
O(θ4) can become relevant

We repeated the parabolic fit reducing the
range of θ considered and compared the values
of R with the results of a fit including θ4

corrections
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Parallel tempering on boundary conditions

Proposed in [arXiv:1706.04443] for CPN models,
described in [arXiv:2012.14000] for SU(N) theories

When N is large enough, approaching the continuum limit,
the topological sector become very separated and standard
update algorithms become ineffective in sampling Q
(Topological slowing down, [arXiv:hep-th/0204125])

nreplica copies of the lattice are simulated and swapped during
the simulation with a Metropolis test

All the replica have the same action, except for a 3-dimensional cubic defect, where links
orthogonal to the defect enter the action with a K (r) factor.
K (r) for r = 0, 1, ..., nreplica − 1 interpolate between K (0) = 1 and K (nreplica−1) = 0

In the last replicum, open boundary conditions in the defect disrupt the topology of the
configuration, making easier to alter the value of Q in an update
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Latent heat formulas

To extract the latent heat we actually compute the difference in trace anomaly between the
two phases

ϵ− 3p

T 4
= T

∂

∂T

( p

T 4

)
= T

∂

∂T

(
1

VT 4
log(Z)

)
On the lattice we can compute

ϵ− 3p

T 4
= N4

t

∂β

∂ log[a(β)/
√
σ]

⟨SW ⟩
Vβ

The latent heat is

∆ϵ

T 4
c

=

(
Nt

Ns

)3 −∂β

∂ log[a(β)/
√
σ]

∣∣∣∣
βc

∑
x ,µ>ν

ℜTr[⟨Πµν⟩d − ⟨Πµν⟩c ]

R =
∆χ

2∆ϵ
=

−∂β

∂ log[a(β)/
√
σ]

∣∣∣∣
βc

〈
Q2

〉
c
−
〈
Q2

〉
d

2
∑

x ,µ>ν ℜTr[⟨Πµν⟩d − ⟨Πµν⟩c ]
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Large N systematics

We fitted R(N) with different
ansätze:

R =
R̄

N2
, N ≥ 3

R =
R̄

N2
, N > 3

R =
R̄

Nc

R =
R̄

N2
+

R̄(1)

N2

Final result N ≥ 3 N > 3 N−c N−2 + N−4
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Multi-histogram: reweighting numerical data

We simulated the system at some values of β. We would like to use the results to compute
the mean value of an observable O at different values of β, in particular interpolating between
the simulated ones

The key observation is that the states of the system are the same, but the probability
distribution is different. We can reweight the states we generated at a give β, to obtain the
probability distribution at a different one

⟨O⟩β =
1

Z (β)

∑
O,E

ρ(O,E )O exp(−β E )

ρ(O,E ) is the density of states of the system with
value O of the observable O and E of the action
Z is the partition function:
Z (β) =

∑
ρ(O,E ) exp(−β E )

ρ(O,E ) can be estimated from any simulation
The best estimation is obtained combining all the
performed simulations
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Multi-histogram: formulas

Notation: the i-th simulation was performed at βi , generating Ni different configurations and
finding ni (O,E ) times the values O and E for the observable and the action
Oi ,s and Ei ,s are the values of the observable and the action for the s-th configuration of the
i-th simulation

The best estimation of ρ(O,E ) is

ρ(E ,O) =

∑
i ni (E ,O)∑

j Nj exp(−βjE )/Zj

Thus can be found

⟨O⟩β =
1

Z (β)

∑
i ,s

Oi ,s∑
j NjZ

−1
j exp[(β − βj)Ei ,s ]

Z (β) =
∑
i ,s

1∑
j NjZ

−1
j exp[(β − βj)Ei ,s ]

Zj are the values of Z (βj) that make the last equation consistent
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