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1 N
(0), = | DI 0 ) = Y 0
=1

The field configuration @(x) is a random variable sampled with MCMC to estimate
computed over a Boltzmann-like density:

—3(¢)
= ———— Z=|Dlgres®

Z known in closed form up to a
numerically intractable normalisation
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MCMC: sequentially proposes new sample and guarantees to eventually converge to a target density.

owever MCMC algorithms come at a cost:

- Sequential — MCMOC chains can’t be parallelized.

- Critical slowing down = Phase transitions.

- Long-range autocorrelations = large statistical errors.

- The partition function Z is unknown.

- No direct estimation of thermodynamic observables.

Kim A. Nicoli - Uni-Bonn, TRA Matter
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We use a parametric function f, (a diffeomorphism) to transform Gaussian samples
Z ~ ¢, into physical configurations ¢ ~ g,

forz€Z~q, —x=fo(z) €X ~qp.

z =fi(¢d)

The parametric function needs to fulfill certain criteria: I I

fo(2) fy (z,_, f (z,)
z Z XX Z,._ ‘ Z ‘ eee ¢

o0 ° ° ‘
Bijective transformation ¢ = f,(2) I P
Invertible and differentiable*
o q, e—— f(z)= f f(z) ) ¢ ~q,
Tractable Jacobian

¢ = fy(z)

Kim A. Nicoli - Uni-Bonn, TRA Matter 4 Turin Lattice Meeting, 12.2023
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The likelihood of g, can be computed exactly:  gy(¢) = go(f; ' (@))

det <6_f9> |
0z

z=fl(p)
fi(z) f (z,_,) fo! (z,) I

z ‘ Z1 XX Z'._1~ zi ‘ eoe ¢

D U A

z~q, o —f(z)= féLo---° f(;(z) ) ¢ ~q,

N |

¢ =1y (2)
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Often the variational density ¢, 1s trained by minimizing the Reverse-KL divergence:

9 P) _ E, [ln %(45)]

KL = |D ] =
(g9l 1p) J [Plgy(P) np( p D)
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Often the variational density ¢, 1s trained by minimizing the Reverse-KL divergence:

9 P) _ E, [ln %(45)]

KL =\|D | =
(g9l 1p) J [Plge(d) In &) )

since we know the target p(¢) is a Boltzmann distribution p(¢) = Z~ ' exp{—S(¢)}

C]e(éb)
p(P)

KL(gl|p) = E,, [m ] =E,, [Ing)¢) + S@) + In 7
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Often the variational density ¢, 1s trained by minimizing the Reverse-KL divergence:

9 P) _ E, [ln %(45)]

KL = |D ] =
(g9l 1p) J [Plgy(P) np( p D)

since we know the target p(¢) is a Boltzmann distribution p(¢) = Z~ ' exp{—S(¢)}

VoKL(gy| |p) = E,, | Voln gy(d)+ V , S()+17Z]
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Often the variational density ¢, 1s trained by minimizing the Reverse-KL divergence:

qo(p) _ [qu [ln %(45)]

KL =\|D 1 =
(g9l 1p) J [$]gy(¢) In &) &)

since we know the target p(¢) is a Boltzmann distribution p(¢) = Z~ ' exp{—S(¢)}

VoKL(gy| |p) = E,, | Voln gy(d)+ V , S()+17Z]
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A

Sample ¢ ~ gy = p

qy(P)

O
O
O

Minimize the reverse-KL
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p(@p)
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p(¢) ~ qe ~ ¢l with p(¢)=exp{_ZS(¢)}

L= JD[qﬁ] expi—5(¢)]
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p(¢) ~ qe ~ ¢l with p(¢)=exp{_ZS(¢)}

7= JD[cb] exp{—S(@)} = [D[qb] 0o D) () where
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p(¢) ~ qe ~ ¢l with p(¢)=exp{_ZS(¢)}

JD[cb] exp{—S(@)} = [D[qb] 0 D) () whee

Z

V4

N
ZZZ
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p(¢) ~ qe ~ ¢l with p(¢)=exp{_ZS(¢)}

7= JD[cb] exp{—S(@)} = [D[qb] 0o D) () where

we ~ 1
Z%ZZNZ —> F=—-TInZ /!

KAN, Anders, Funcke, et al., Phys. Rev. Lett. (2021)
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(0), =
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(0), = {(w0),,

|

p(P)
qo(P)

w(g) =

Kim A. Nicoli - Uni-Bonn, TRA Matter 14 Turin Lattice Meeting, 12.2023



: : : AT
Asymptotically Unbiased Estimators o

IIIIIIIIIIIIIIIIIIIIIIIIIII
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

W
(0), = (00)g, % = 2, W (P)OW) 4~
=1

|

p(p)

= qo(P)
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d
S(@) = D 2 =26 D WP + @) + (1 = 2D)p(x)* + A (%)’
XEA u=1
" bofow ]
Al : A QAD ] $ hme T |
(el | , R I
Al ° Symmetric Phase Broken Phase va i o 1 1
> |
) © ” I ' ' '
. /x.QBA“f :: | :
1 . : | |
e o e e esese AN 1N i AN
0.0 0.1 0.2 0.3 0.4 0.5 WG ap® e @

hopping parameter k Lattice Volume A

KAN, Anders, Funcke, et al., Phys. Rev. Lett. (2021)
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- 0.2900
2 2.0
<
: 0.2850
0.5
" 0.2800 .
S 10
&1 o e 0.2750
E 102 J ..(f A e Pl Y
- 'l | i
8 hL!IIIIIJIIIII!III!II!I!!!|}I 1] I [ LYl K | ” 02700

—2 —1 0 1 2

KAN, Anders, Hartung, et al., Phys. Rev. D (2023)
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Real Scalar ¢p*-Theory in (1+1) D NSRS e
e—5(¢) N =S
Z=E¢Nq9[q9 ] Z 529

l b;: ~ 4y

F,=-T log(qu)

<=

KAN, Anders, Hartung, et al., Phys. Rev. D (2023)
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- Rev-KL - F,
-4- HMC
-4- Rev-KL - F,

<=

0
Il
I
~
[S—
o
oQ
N
>
S
N

Fo_ 51
F,=T log(Zp )

KAN, Anders, Hartung, et al., Phys. Rev. D (2023)
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Something seems to invalidate our asymptotic guarantees!
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Reverse-KL Div.

qo(P)
p(P)

KLg(go||p) = JD[¢]QQ(¢) In

Kim A. Nicoli - Uni-Bonn, TRA Matter 21 Turin Lattice Meeting, 12.2023
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What'’s going wrong then?
Reverse-KL Div. Forward-KL Div.
KLy(ay) | p) = JD[¢]QQ(¢) In 909 KLy(p||gp) = JD[(/b]p(qb) In 29)
p(P) q6(P)

Kim A. Nicoli - Uni-Bonn, TRA Matter 21 Turin Lattice Meeting, 12.2023
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Reverse-KL Div.

qo(P)
KLp(gyl|p) = JD [¢1gs(¢) In
p(@)
251 —— p(9)
“““ qar(9)
2.0 1
. e Self-Sampling (efficient).
e * No need for training data.
< ol * Mode-dropping.
0.5
0.0

Kim A. Nicoli - Uni-Bonn, TRA Matter

22

Forward-KL Div.
KL,(pl 1) = | DIdIp@) 1n 22
qo(P)
> — p(9)
qr ()
1'5_ e Maximum Likelihood.

* Requires training data.

e Fake modes.
1.0 1
0.5 1
0.0 / T \
—1 0 1
¢
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251 —— p(¢)

2.0

density

1.0 1

0.5 1

0.0
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ESR is not a good metric!

4 //’/
259 —— p(¢) -
“““ qr(®) 1
2.0 -
2
w
2151
=
)
< p(®)
1.0 1 Where w =
q0(9)
0.5 1
0.0 The model is blind with respect to one (or more) of the modes of the target density.
' —1
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Definition. The effective support of the variational density g, relative to p

supp, .(¢o) = {¢ € supp(qv); qo(¢) > ep(9)}

for a given numerical threshold €. The mode dropping set is then given by

S = SU.pp(p) \S/l—lﬁ)p,e(qe)

Kim A. Nicoli - Uni-Bonn, TRA Matter 24 Turin Lattice Meeting, 12.2023
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Definition. The effective support of the variational density g, relative to p

supp,, .(qs) = {¢ € supp(qo); qo(®) > ep(9)}

for a given numerical threshold €. The mode dropping set is then given by

S = SU.pp(p) \S/l_lﬁ)p,e(qe)

if the flow is effectively mode-dropping, the importance-weighted estimator, with a finite number of samples N,

will miss a contribution from the mass [ p(¢)d g with approximately the probability 1 — eN j p(Ph)de.
S S

Kim A. Nicoli - Uni-Bonn, TRA Matter 24 Turin Lattice Meeting, 12.2023
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Definition. We define the effective sampler distribution

qo(¢) = {qe(@/g € Py where (=]  Dldla(¢) <1

0 otherwise, SUPPy, e

is the multiplicative renormalization factor necessary to guarantee the normalization of qy(¢).
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Definition. We define the effective sampler distribution

qo(¢) = {qe((b)/g € Py where (=]  Dldla(¢) <1

0 otherwise, SUPPy, e

is the multiplicative renormalization factor necessary to guarantee the normalization of qy(¢).

It follows that the importance-weighted estimator misses the contribution from the mode-dropping set &

1 < p(¢i) N | pl9) _
N 2 gy(r) 010 B 509) =0

O
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The effect of mode-dropping

AT
UNIVERSITAT MATTER
Definition. We define the effective sampler distribution
_ qo(9)/¢ if ¢ € supp, (gs)
qo(¢) = 0

. where ¢ = L
otherwise,

is the multiplicative renormalization factor necessary to guarantee the normalization of qy(¢).

Dlglge(9) <1
supp,, .
O

It follows that the importance-weighted estimator misses the contribution from the mode-dropping set &

1~ () {
— O i)~ K ~3qg
N — q0(¢z) (¢ ) p~q

WO(@} =0

p(¢)

=0

the typical values of the estimator © ~ 0 can be significantly different from the true expectation value!
Kim A. Nicoli - Uni-Bonn, TRA Matter
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When g, has full effective support on the domain of p

)] o) _
w =B, |20 - [ w@B8oe= [ D=1
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When g, has full effective support on the domain of p

w =B, |20 - ol PO) pig) = p(6) Do) = 1.

q6()

however if g, is effectively mode-dropping this expectation value becomes

1 e—5(®)
7o | G| €01

do (QZS) supp(qe)

w

Kim A. Nicoli - Uni-Bonn, TRA Matter 26 Turin Lattice Meeting, 12.2023
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When g, has full effective support on the domain of p

)] o) _
w =B, |20 - [ w@B8oe= [ D=1

however if g, is effectively mode-dropping this expectation value becomes
1 6_5 (¢)

0= FEen ) €O

for which we can get the corresponding Monte Carlo estimator, i.e., the mode-dropping estimator

1 (1 ie—swi) 1 o qo(;) ZN: o—5(6:)
W =~ — — — S
Zy \N = (%) N = e=5(%3) i—1

71=1
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o ForwardKL - Fp —m— ReverseKL - ﬁ’p

o ForwardKL - ﬁ’q --#-- ReverseKL - ﬁq
14000 A=64x%x8, 41=0.022
120001 |
100001 1. 1.0 ==
gcé 8000- : i\
5 B S 0.5 FwdKL
R --1-- RevKL
= 6000 »
S L | R N D M
4000 02 03 04 05 06 07 08
2000 K
0 =—&——- BB g

02 03 04 05 06 07 08 KAN, Anders, Hartung, et al., Phys. Rev. D (2023)
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1) Asymptotically unbiased samplers can be constructed from trained DGMs (NIS or NMCMC).

i1) Direct estimation of the partition function and thermodynamic observables.

ii1) Sampling from DGMs is embarrassingly parallelizable # MCMC (sequential).

iv) Training with forward-KL leads to better models though requires training samples.

v) Derivation of mode-dropping estimator to reliably assess the goodness of the model.

vi) Mitigation of mode-dropping using different objectives (FWD-KL) or stochastic approaches (SNFs).
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Thank you for your attention!

(... and Merry Xmas! )
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