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The O(n) vector model

-component unit vector

• in dimension 

• T symmetry is spontaneously broken:

• T -invariant Euclidean scalar field theory
in n space and 1 imaginary time dimensions

• continuum description: order parameter field
imaginary time

• the ground state manifold and the space boundary both correspond to 
the sphere so different points on the space boundary can be 
mapped onto different ground states.
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The quantum theory possesses stable particle excitations associated with 
extended field configurations: topological excitations.
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Topological particles

The quantum theory possesses stable particle excitations associated with 
extended field configurations: topological excitations.

The propagation of these particles in
imaginary time generates topological defect
lines for the Euclidean system:

Hypercylinder
with large but finite.
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[1] vortices

[2] hedgehogs

One configuration of the 
particle trajectory is shown.
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Once fixed the boundary conditions, the order parameter can 
be analytically determined from the large    asymptotics of the boundary 
states:
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Order parameter

Once fixed the boundary conditions, the order parameter can 
be analytically determined from the large    asymptotics of the boundary 
states:

Then:

• odd function of 

• interpolates between zero at and

• depends on
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[1] Numerical determination of the vortex mass finite value

Derrick’s Theorem prevents the existence of stable finite energy 
topological configurations in theories of classical scalar fields in

This violation does not persist at quantum level, in presence of a non-
trivial fixed point such as that of the        model in

[2]         (in general, above the upper critical dimension        ..)     
….Gaussian fixed point, mean-field regime:

Derrick’s result might hold

does not depend on

[G.H. Derrick, J. Math. Phys. 5 (1964) 1252.]
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Residual fluctuations

Despite the R-independence, the overall x-dependence of in [2] 
was found to be quite analogous to that observed in [1]:

smooth interpolation,
not a step-like function.

We should consider residual contributions not considered so far:

These states are      Goldstone bosons associated to the spontaneous 
breaking of the continuous O(n) symmetry.
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Goldstone correction

The analytical computation would require information about the matrix 
elements of the field on these states, which is not available.
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Goldstone correction

The analytical computation would require information about the matrix 
elements of the field on these states, which is not available.

But some considerations on the Goldstone correction can be done:

• centered in

• remain appreciable within a width 

• cannot depend on

The width W scales as a length:

The correspondent width in [1] is
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mean-field value of the critical exponent

around the Gaussian fixed point (for )



Finite size dependence

If one tries to use the formulae of [1] to explain the results in [2]:
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Finite size dependence

If one tries to use the formulae of [1] to explain the results in [2]:

artificial linear dependence of on

As correctly said in [2]:

This confirms that for (R-independent) and
also the order parameter is size-independent.
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