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A gquantum Newton’s cradle
Or integrability at work

* Clouds of cold atoms interacting
and oscillating for long times

 Substantial difference between
1D and higher dimensions

* |nitial state memory

* First experimental realisation of
an integrable model

/

Z

T. Kinoshita, T. Wenger and D. Weiss, “A quantum Newton’s cradle”,
Nature (2006)



Integrable Field Theories

Infinite number of conserved
quantities constraints the S-matrix

Elasticity and factorisability in
scattering processes

Bootstrap equation from unitarity,
crossing symmetry and equivalence
between bound states and
asymptotic ones

Stable particle content

Simplest examples: Ising, Sinh-
Gordon and Sine-Gordon models

Bootstrap equation



Quantum Quenches in Integrable Systems
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Local quench on a spin chain

Measurement



Global quench

H(g,) — H(g)

Initial state’s unitary evolution



Global quench

H(g,) — H(g)

Extensive initial state | y)

Extensive in the norm (| y), i.e. diverging in the thermodynamic limit
(macroscopic state)

Non-adiabaticity of the quenching

Infinite number of emerging pairs of entangled particles with bosons
exchange statistics (“Cooper pairs”)



Relaxation towards the steady state
After a global quench

(0(0) = Z"Xw| 0 ly)
Initial state decomposition: | l//> — Z 6551 | /1>
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Quench Action method

J.S. Caux, F.H.L. Essler - “Time evolution of local observables after quenching to an integrable model” (Phys. Rev. Lett. 110, 257203 (2013))



Quench Action method
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Quench Action method

(w|O@) | p)

(0(1)) = W C.

Representative eigenstate



Quench Action method
(w| 0@ |p)
O(1)) = + h
o) 2yl p)

. C .

Representative eigenstate

 Representative eigenstate’s occupation density found by the means of gIBA

 More economic computational costs

J.S. Caux, F.H.L. Essler - “Time evolution of local observables after quenching to an integrable model” (Phys. Rev. Lett. 110, 257203 (2013))



Relaxation towards the steady state
After a global quench

(O() = e 'f(t) + g(1) + (0),



Relaxation towards the steady state
After a global quench

(O) = e ' 'f() + g(1) + (0),
O local*:  f(t) ~ g(t) ~ t %e*™M!
O semi-local*: f(f) ~ t~%*M" o(1) = (

*with respect to fundamental fields, cf. Jordan-Wigner strings



Decomposing on the basis of eigenstates {4} again:

(0()) = ), ™21 0] p)
A



Decomposing on the basis of eigenstates {4} again:

(0(1)) = Z e ﬂ_ésp"'i(wﬁ_wp)t.
A

FO(4|p)




Decomposing on the basis of eigenstates {4} again:
<O(t)> _ 2 : €5SA—5Sp+l(a)/1—a)p)t

Form Factors & of operator O
AXioms:

1. Scattering properties
2. Crossing symmetry

3. Locality

4. Annihilation pole

Bound state axiom 5 . BOU nd State




Decomposing on the basis of eigenstates {4} again:

<0(t)> _ Z €5S/1—5Sp+i(a)/1—a)p)t
A

Smirnov’s decomposition formula:

(A0 u) = (/1\/4)8‘78+ +3‘7§,+M(/11 + im, ..., 1y



Splitting the matrix element into singular and regular parts as |4) — | p):

(A O0|p) = </1|0|P>sing+ </1|O|p>reg

Contour integration
Saddle point approximation

Pole contribution ~ e ‘()
~ 8(1)

B. Bertini, D. Schuricht, F.H.L. Essler - “Quantum quench in

the sine-Gordon model”, J. Stat. Mech. (2014) P10035
J.S. Caux, FH.L. Essler - “Time evolution of local

observables after quenching to an integrable model”
(Phys. Rev. Lett. 110, 257203 (2013)



Role of locality

And semi-locality

[(O) # 0

Vanishing regular parts

of matrix elements
# between representative

state and other
eigenstates A

_ eZiﬂl(@)

e [(O) = semi-locality index
» Derived from OPE of the UV-CFT theory: O(z)®(w) ~ (z — w) "OP(z)

 For example, |I=1/2 for the spin field in Ising due to the Jordan-Wigner string



Role of locality

And semi-locality

e [(O) = semi-locality index

. Derived from OPE of the UV-CFT theory: O(2)®(w) ~ (z — w) "OW(z)

 For example, |I=1/2 for the spin field in Ising due to the Jordan-Wigner string



Semi-local operators relax exponentially
faster compared to local ones.



Semi-local operators relax exponentially
faster compared to local ones.

But why?



Entanglement entropy
In 1D models

Ve

Entanglement entropy of finite segment A




Entanglement entropy
In 1D models

» Renyi entropies S,

* Replica trick:

Sn(l) — = trA(pA,n lOg pA,n)
S(1) = lim S, (1)

n—1

 Equal-time correlator of branch
twist operators 7' (a,, f) and

T;(CZZa t)

Action of branch twist operator on local fields



Entanglement growth after a quench

Semi-infinite line

e Subsystem A is now infinite

* Evaluating two-point function turns into just studying the one-point function
of the operator T,(0,f) — clustering property of matrix elements

* Entanglement entropy growth:

log 2mt

S(H/t=—-1+ @(
2mt

) Comr > 1



Entanglement growth after a quench

Semi-infinite line

e Subsystem A is now infinite

* Evaluating two-point function turns into just studying the one-point function
of the operator T,(0,f) — clustering property of matrix elements

* Entanglement entropy growth:

log 2mt
St/t—-‘F@ , o mt> 1
) ( 2mt )

o Same value of damping exponent!



Entanglement growth after a quench
Segment of length /

* Evaluating two-point function is easier on the Euclidean plane

 Entanglement entropy grows and saturates:
S,y~—-T1t, t<l/2
SU,t)~=T11/2 , t>1/2

» Calabrese-Cardy quasiparticle picture retrieved as a first approximation

e Natural cutoffs



Conclusions

* (General conclusion for integrable field theories

 Mainly related to the analytic structure of operator’s Form Factors (semi-
locality mainly)

* | ocal memory vs non-local

* Entanglement promotes relaxation of semi-local observables towards their
equilibrium values

* All these results can be mapped into their respective non-relativistic system
(Lieb-Liniger related system) by the means of out of equilibrium non-
relativistic limit



Conclusions

* (General conclusion for integrable field theories

 Mainly related to the analytic structure of operator’s Form Factors (semi-
locality mainly)

* | ocal memory vs non-local

* Entanglement promotes relaxation of semi-local observables towards their
equilibrium values

* All these results can be mapped into their respective non-relativistic system
(Lieb-Liniger related system) by the means of out of equilibrium non-
relativistic limit

Thank you!



Linked Cluster expansion
And boundary initial state

 We choose the following boundary initial state:
+00

[y) = exp J CICYACIIVAC Y
0

» Expand (O(%)) in terms of K-functions and cancel the divergent contributions
with finite volume regularisation

» Extra care in determining the non-exponentiating factors ( g(7) )

 Resum the expansion to get the full result



Before 1t’s too late

Ergodicity, thermalisation and relaxation

J. W. Gibbs |deal gas L. Boltzmann



Before 1t’s too late

Ergodicity, thermalisation and relaxation

J. W. Gibbs

« System explores the whole
space of energetically
equivalent configurations

» After a transient period, the
system is fully described by an
equilibrium distribution
function with temperature T

L. Boltzmann



@
- > C, Thermal | O
Thermal i Thermal state
)
What if it

quantum? ’

Or Eigenstate
Thermalisation Hypothesis

Initial state

©
QO
-
©
.
[
L
e,
O

Eigenstate thermalization



Form Factors

Definition

1677']?7(91, ""HN) — <O|O|61, ...,6N>




Form Factors

Recovering full matrix elements

gﬁ(gl, ""HN) — <O|0|61, ""9N>

F G +im, 0y, ... 00) = (€010, ... O conn



Form Factors

Watson’s equations

1677']?7(91, ""HN) — <O|O|61, ...,6N>




Form Factors

Watson’s equations

gﬁ(gl, ""HN) — <O|0|61, ""9N>

N
FO, + 2ir, ..., 0y) = *MOF,, ..., 0y, 0) = | | 56, - 0)F %0, ... 0,
=)



Form Factors

Annihilation pole axiom

Annihilation pole axiom

N-2
—iResy_gF WO+ i, 0,0,, ...,0y_,) = [1 aad | HOE 9)] F 42015, Oy_)
=1
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Ising model

e and o operators

 Massive fermionic theory, quench in the mass in the disordered phase
My — m

e Free fermions S-matrix S = — 1

» ¢ local vs o semi-local wrt the fundamental field p:

> > 1
0(z, D)p(0,0) ~ — ( e'#y/z2yp(0) + e 7'+ /Zp(0) ), 1(O) = —
V2|z|7 ( V: V: ) 2



Transverse field Ising model

o; and &, operators

. Lattlce theory

H = Z 76367, + h&]

» Quench in the coupling i, — h

o After Jordan-Wigner and Bogoliubov transformations we have free fermions

o 6? local vs 8;6 semi-local wrt the fermionic field ¢,



Energy/transverse spin operator Spin/longitudinal spin operator

D. Fioretto, G. Mussardo -“Quantum Quenches in Integrable Field D. Schuricht, F.H.L. Essler - “Dynamics in the Ising field theory after a
Theories”, New J.Phys.12:055015,2010 quantum quench”, J. Stat. Mech. (2012) P04017
P. Calabrese, M. Fagotti, FH.L. Essler - “Quantum Quench in the P. Calabrese, M. Fagotti, FH.L. Essler - “Quantum Quench in the

Transverse Field Ising chain I”, J. Stat. Mech. (2012) PO7016 Transverse Field Ising chain II”, J. Stat. Mech. (2012) P07022



Sinh-Gordon model

Vertex operator and twist operator

* |Lagrangian field theory: ,

| , M
<L =—(0¢)° — —(coshggpp — 1)
2 97

* |nteracting theory with no bound states and non-trivial S-matrix:

5 sSinh @ — i sin Br

sinh @ + i sin Brx

e Local vertex operator e'* vs semi-local CFT twist operator 7



Vertex operator CFT Twist operator

= g(?)

= e f(0)

E. Di Salvo, D. Schuricht - “Quantum quenches in the sinh-Gordon and Lieb-Liniger
models”, J. Stat. Mech. (2023) 053107



Vertex operator CFT Twist operator

Same behaviour
of Ising’s spin
operator o(?)

= g(?)

= e f(0)

E. Di Salvo, D. Schuricht - “Quantum quenches in the sinh-Gordon and Lieb-Liniger
models”, J. Stat. Mech. (2023) 053107



Sine-Gordon model

Vertex operators

* |Lagrangian field theory:

2
7 =02 -1

ﬂZ

* |nteracting theory of solitons with bound states (breathers)

(cos fp — 1)

e |ocal vertex operator e'P? (V. Gritsev et al., PRL 2007) vs semi-local one PP
(A. Cortes Cubero et al., J. Stat. Mech. 2017)



Sine-Gordon model

Vertex operators

* |Lagrangian field theory:

_ L app o
% = —(0)

ﬂZ

* |nteracting theory of solitons with bound st

(cos fp — 1)

CEEIS)

e | ocal vertex operator e'P? (V. Gritsev e 2007) vs semi-local one e'PP!2

(A. Cortes Cubero et al., J gotat. Me



Branch twist operator’s form factors

* Extension of S-matrix to particles
INn different replicated spaces

* Annihilation pole from adjacent
sheets y and (u + 1)

e Semi-locality index is now a

matrix mixing different sectors of
the theory

Ot O Oyl Wi+l




