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A quantum Newton’s cradle 
Or integrability at work

• Clouds of cold atoms interacting 
and oscillating for long times


• Substantial difference between 
1D and higher dimensions


• Initial state memory


• First experimental realisation of 
an integrable model

T. Kinoshita, T. Wenger and D. Weiss, “A quantum Newton’s cradle”, 
Nature (2006)



Integrable Field Theories

Bootstrap equation

• Infinite number of conserved 
quantities constraints the S-matrix


• Elasticity and factorisability in 
scattering processes


• Bootstrap equation from unitarity, 
crossing symmetry and equivalence 
between bound states and 
asymptotic ones


• Stable particle content


• Simplest examples: Ising, Sinh-
Gordon and Sine-Gordon models

Yang-Baxter equations



Quantum Quenches in Integrable Systems

Local quench on a spin chain



Global quench

Initial state’s unitary evolution

H(g0) → H(g)



Global quench

H(g0) → H(g)

• Extensive initial state 


• Extensive in the norm , i.e. diverging in the thermodynamic limit 
(macroscopic state)


• Non-adiabaticity of the quenching


• Infinite number of emerging pairs of entangled particles with bosons 
exchange statistics (“Cooper pairs”)

|ψ⟩

⟨ψ |ψ⟩



Relaxation towards the steady state
After a global quench

⟨O(t)⟩ = Z−1⟨ψ |O(t) |ψ⟩

⟨O(t)⟩ = ∑
λ

∑
μ

e−δsλ−δsμei(ωλ−ωμ)t⟨λ |𝒪 |μ⟩

|ψ⟩ = ∑
λ

eδsλ |λ⟩Initial state decomposition: 



Quench Action method

J.S. Caux, F.H.L. Essler - “Time evolution of local observables after quenching to an integrable model” (Phys. Rev. Lett. 110, 257203 (2013))



Quench Action method

⟨O(t)⟩ =
⟨ψ |O(t) |ρ⟩

2⟨ψ |ρ⟩
+ h . c .
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Quench Action method

⟨O(t)⟩ =
⟨ψ |O(t) |ρ⟩

2⟨ψ |ρ⟩
+ h . c .

Representative eigenstate
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Quench Action method

⟨O(t)⟩ =
⟨ψ |O(t) |ρ⟩

2⟨ψ |ρ⟩
+ h . c .

Representative eigenstate

• Representative eigenstate’s occupation density found by the means of gTBA


• More economic computational costs

J.S. Caux, F.H.L. Essler - “Time evolution of local observables after quenching to an integrable model” (Phys. Rev. Lett. 110, 257203 (2013))



Relaxation towards the steady state
After a global quench

⟨O(t)⟩ = e−Γtf(t) + g(t) + ⟨O⟩ρ



Relaxation towards the steady state
After a global quench

⟨O(t)⟩ = e−Γtf(t) + g(t) + ⟨O⟩ρ

f(t) ∼ g(t) ∼ t−αe2iMt local*: O
 semi-local*: O , f(t) ∼ t−αe2iMt g(t) = 0

*with respect to fundamental fields, cf. Jordan-Wigner strings



Decomposing on the basis of eigenstates  again:{λ}

⟨O(t)⟩ = ∑
λ

eδsλ−δsρ+i(ωλ−ωρ)t⟨λ |O |ρ⟩



Decomposing on the basis of eigenstates  again:{λ}

⟨O(t)⟩ = ∑
λ

eδsλ−δsρ+i(ωλ−ωρ)t⟨λ |O |ρ⟩

ℱO(λ |ρ)



Decomposing on the basis of eigenstates  again:{λ}

Form Factors  of operator  
Axioms:


1. Scattering properties


2. Crossing symmetry


3. Locality


4. Annihilation pole


5. Bound state

ℱ O

⟨O(t)⟩ = ∑
λ

eδsλ−δsρ+i(ωλ−ωρ)t⟨λ |O |ρ⟩

Annihilation pole axiom

Bound state axiom



Decomposing on the basis of eigenstates  again:{λ}

Smirnov’s decomposition formula:


⟨λ |O |μ⟩ = ⟨λ |μ⟩ℱO
0 + … + ℱO

N+M(λ1 + iπ, …, μM)

⟨O(t)⟩ = ∑
λ

eδsλ−δsρ+i(ωλ−ωρ)t⟨λ |O |ρ⟩



Splitting the matrix element into singular and regular parts as :|λ⟩ → |ρ⟩

⟨λ |O |ρ⟩ = ⟨λ |O |ρ⟩sing + ⟨λ |O |ρ⟩reg

Saddle point approximation


∼ g(t)

Contour integration


Pole contribution ∼ e−Γtf(t)
B. Bertini, D. Schuricht, F.H.L. Essler - “Quantum quench in 

the sine-Gordon model”, J. Stat. Mech. (2014) P10035
J.S. Caux, F.H.L. Essler - “Time evolution of local 

observables after quenching to an integrable model” 
(Phys. Rev. Lett. 110, 257203 (2013)



Role of locality
And semi-locality

= e2iπl(𝒪)
Vanishing regular parts 
of matrix elements 
between representative 
state and other 
eigenstates  λ

•  = semi-locality index


• Derived from OPE of the UV-CFT theory: 


• For example, l=1/2 for the spin field in Ising due to the Jordan-Wigner string

l(𝒪)

𝒪(z)Φ(w) ∼ (z − w)−l(𝒪)Ψ(z)

l(𝒪) ≠ 0



Role of locality
And semi-locality

= e2iπl(𝒪) g(t) = 0

•  = semi-locality index


• Derived from OPE of the UV-CFT theory: 


• For example, l=1/2 for the spin field in Ising due to the Jordan-Wigner string

l(𝒪)

𝒪(z)Φ(w) ∼ (z − w)−l(𝒪)Ψ(z)



Semi-local operators relax exponentially 
faster compared to local ones.



But why?

Semi-local operators relax exponentially 
faster compared to local ones.



Entanglement entropy
In 1D models

Entanglement entropy of finite segment A



Entanglement entropy
In 1D models

• Renyì entropies 


• Replica trick: 
 

 
 




• Equal-time correlator of branch 
twist operators  and 

Sn

Sn(l) = − trA(ρA,n log ρA,n)

S(l) = lim
n→1

Sn(l)

Tn(a1, t)
T†

n(a2, t)
Action of branch twist operator on local fields

3 copies of the same QFT on the Euclidean space



Entanglement growth after a quench
Semi-infinite line

• Subsystem A is now infinite


• Evaluating two-point function turns into just studying the one-point function 
of the operator  — clustering property of matrix elements


• Entanglement entropy growth: 
 

  ,    

Tn(0,t)

S(t)/t = − Γ + 𝒪 ( log 2mt
2mt ) mt ≫ 1



Entanglement growth after a quench
Semi-infinite line

• Subsystem A is now infinite


• Evaluating two-point function turns into just studying the one-point function 
of the operator  — clustering property of matrix elements


• Entanglement entropy growth: 
 

  ,    


• Same value of damping exponent!

Tn(0,t)

S(t)/t = − Γ + 𝒪 ( log 2mt
2mt ) mt ≫ 1



Entanglement growth after a quench
Segment of length l

• Evaluating two-point function is easier on the Euclidean plane


• Entanglement entropy grows and saturates: 
 

  ,     
 

  ,    


• Calabrese-Cardy quasiparticle picture retrieved as a first approximation


• Natural cutoffs

S(l, t) ≃ − Γt t < l/2

S(l, t) ≃ − Γl/2 t > l/2



Conclusions
• General conclusion for integrable field theories


• Mainly related to the analytic structure of operator’s Form Factors (semi-
locality mainly)


• Local memory vs non-local


• Entanglement promotes relaxation of semi-local observables towards their 
equilibrium values


• All these results can be mapped into their respective non-relativistic system 
(Lieb-Liniger related system) by the means of out of equilibrium non-
relativistic limit



Conclusions
• General conclusion for integrable field theories


• Mainly related to the analytic structure of operator’s Form Factors (semi-
locality mainly)


• Local memory vs non-local


• Entanglement promotes relaxation of semi-local observables towards their 
equilibrium values


• All these results can be mapped into their respective non-relativistic system 
(Lieb-Liniger related system) by the means of out of equilibrium non-
relativistic limit

Thank you!



Linked Cluster expansion
And boundary initial state

• We choose the following boundary initial state:




• Expand  in terms of -functions and cancel the divergent contributions 
with finite volume regularisation


• Extra care in determining the non-exponentiating factors (  )


• Resum the expansion to get the full result

|ψ⟩ = exp {∫
+∞

0
dθK(θ)Z†(−θ)Z†(θ)} |0⟩

⟨𝒪(t)⟩ K

g(t)



Before it’s too late
Ergodicity, thermalisation and relaxation

L. BoltzmannJ. W. Gibbs Ideal gas



Before it’s too late
Ergodicity, thermalisation and relaxation

L. BoltzmannJ. W. Gibbs

•  System explores the whole 
space of energetically 
equivalent configurations


•  After a transient period, the 
system is fully described by an 
equilibrium distribution 
function with temperature T



What if it is 
quantum?
Or Eigenstate 
Thermalisation Hypothesis



Form Factors
Definition

ℱO
N(θ1, …, θN) = ⟨0 |O |θ1, …, θN⟩

A n-particle form factor of the operator O



Form Factors
Recovering full matrix elements

ℱO
N(θ1, …, θN) = ⟨0 |O |θ1, …, θN⟩

ℱO
N+1(ξ1 + iπ, θ1, …, θN) = ⟨ξ1 |O |θ1, …, θN⟩conn

Crossing symmetry



Form Factors
Watson’s equations

ℱO
N(θ1, …, θN) = ⟨0 |O |θ1, …, θN⟩



Form Factors
Watson’s equations

ℱO
N(θ1, …, θN) = ⟨0 |O |θ1, …, θN⟩

ℱO
N(θ1, …, θi+1, θi, …θN) = S(θi − θi+1)ℱO

N(θ1, …, θi, θi+1, …θN)

ℱO
N(θ1 + 2iπ, …, θN) = e2iπl(O)ℱO

N(θ2, …, θN, θ1) =
N

∏
i=2

S(θi − θ1)ℱO
N(θ1, …, θN)



Form Factors
Annihilation pole axiom

Annihilation pole axiom

−iResθ̄=θℱO
N(θ̄ + iπ, θ, θ1, …, θN−2) = [1 − e2iπl(O)

N−2

∏
i=1

S(θi − θ)] ℱO
N−2(θ1, …, θN−2)





Ising model
 and  operatorsε σ

• Massive fermionic theory, quench in the mass in the disordered phase



• Free fermions S-matrix 


•  local vs  semi-local wrt the fundamental field :

,   

m0 → m

S = − 1

ε σ μ
σ(z, z̄)μ(0,0) ∼

1

2 |z |
1
4

(ei π
4 zψ(0) + e−i π

4 z̄ψ̄(0)) l(𝒪) =
1
2



Transverse field Ising model
 and  operatorŝσz

i ̂σx
i

• Lattice theory: 




• Quench in the coupling 


• After Jordan-Wigner and Bogoliubov transformations we have free fermions


•  local vs  semi-local wrt the fermionic field  

H =
L−1

∑
i=1

[J ̂σx
i ̂σx

i+1 + h ̂σz
i]

h0 → h

̂σz
i ̂σx

i ̂ci



D. Fioretto, G. Mussardo -“Quantum Quenches in Integrable Field 
Theories”, New J.Phys.12:055015,2010 

P. Calabrese, M. Fagotti, F.H.L. Essler - “Quantum Quench in the 
Transverse Field Ising chain I”, J. Stat. Mech. (2012) P07016 

Energy/transverse spin operator Spin/longitudinal spin operator

D. Schuricht, F.H.L. Essler - “Dynamics in the Ising field theory after a 
quantum quench”, J. Stat. Mech. (2012) P04017 

P. Calabrese, M. Fagotti, F.H.L. Essler - “Quantum Quench in the 
Transverse Field Ising chain II”, J. Stat. Mech. (2012) P07022




Sinh-Gordon model
Vertex operator and twist operator τ

• Lagrangian field theory: 

                              


• Interacting theory with no bound states and non-trivial S-matrix: 
 

                                   


• Local vertex operator  vs semi-local CFT twist operator 

ℒ =
1
2

(∂ϕ)2 −
μ2

g2
(cosh gϕ − 1)

S(θ) =
sinh θ − i sin Bπ
sinh θ + i sin Bπ

eiαϕ τ



Vertex operator CFT Twist operator

= g(t)

= e−Γtf(t)

E. Di Salvo, D. Schuricht - “Quantum quenches in the sinh-Gordon and Lieb-Liniger 
models”, J. Stat. Mech. (2023) 053107



Vertex operator CFT Twist operator

Same behaviour 
of Ising’s spin 
operator σ(t)

= g(t)

= e−Γtf(t)

E. Di Salvo, D. Schuricht - “Quantum quenches in the sinh-Gordon and Lieb-Liniger 
models”, J. Stat. Mech. (2023) 053107



Sine-Gordon model
Vertex operators

• Lagrangian field theory: 

                              


• Interacting theory of solitons with bound states (breathers)


• Local vertex operator  (V. Gritsev et al., PRL 2007) vs semi-local one  
(A. Cortes Cubero et al., J. Stat. Mech. 2017)

ℒ =
1
2

(∂ϕ)2 −
μ2

β2
(cos βϕ − 1)

eiβϕ eiβϕ/2



Sine-Gordon model
Vertex operators
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(∂ϕ)2 −
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Branch twist operator’s form factors

• Extension of S-matrix to particles 
in different replicated spaces


• Annihilation pole from adjacent 
sheets  and 


• Semi-locality index is now a 
matrix mixing different sectors of 
the theory

μ (μ + 1)


