Relaxation Dynamics in **Integrable Field Theories** Manuscript(s) in preparation, under the supervision of Dr. D. Schuricht

Emanuele Di Salvo (Utrecht University) - Torino, 21/12/2023

Universiteit Utrecht

A quantum Newton's cradle Or integrability at work

- Clouds of cold atoms interacting and oscillating for long times
- Substantial difference between 1D and higher dimensions
- Initial state memory
- First experimental realisation of an integrable model

T. Kinoshita, T. Wenger and D. Weiss, "A quantum Newton's cradle", *Nature* (2006)

- Infinite number of conserved quantities constraints the S-matrix
- Elasticity and factorisability in scattering processes
- Bootstrap equation from unitarity, crossing symmetry and equivalence between bound states and asymptotic ones
- Stable particle content
- Simplest examples: Ising, Sinh-Gordon and Sine-Gordon models

Integrable Field Theories

Yang-Baxter equations

Bootstrap equation

Quantum Quenches in Integrable Systems

Local quench on a spin chain

Initial state's unitary evolution

$H(g_0) \rightarrow H(g)$

$H(g_0) \rightarrow H(g)$

- Extensive initial state $|\psi\rangle$
- Extensive in the norm $\langle \psi | \psi \rangle$, i.e. diverging in the thermodynamic limit (macroscopic state)
- Non-adiabaticity of the quenching
- Infinite number of emerging pairs of entangled particles with bosons exchange statistics ("Cooper pairs")

Relaxation towards the steady state After a global quench

$\langle O(t) \rangle = Z^{-1} \langle \psi | O(t) | \psi \rangle$ Initial state decomposition: $|\psi\rangle = \int e^{\delta s_{\lambda}} |\lambda\rangle$

$\langle O(t) \rangle = \sum e^{-\delta s_{\lambda} - \delta s_{\mu}} e^{i(\omega_{\lambda} - \omega_{\mu})t} \langle \lambda \mid \mathcal{O} \mid \mu \rangle$ μ

Quench Action method

J.S. Caux, F.H.L. Essler - "Time evolution of local observables after quenching to an integrable model" (Phys. Rev. Lett. 110, 257203 (2013))

Quench Action method $\langle O(t) \rangle = \frac{\langle \psi | O(t) | \rho \rangle}{2 \langle \psi | \rho \rangle} + h \cdot c \,.$

J.S. Caux, F.H.L. Essler - "Time evolution of local observables after quenching to an integrable model" (Phys. Rev. Lett. 110, 257203 (2013))

Quench Action method

J.S. Caux, F.H.L. Essler - "Time evolution of local observables after quenching to an integrable model" (Phys. Rev. Lett. 110, 257203 (2013))

Representative eigenstate

Quench Action method

- More economic computational costs

J.S. Caux, F.H.L. Essler - "Time evolution of local observables after quenching to an integrable model" (Phys. Rev. Lett. 110, 257203 (2013))

Representative eigenstate

Representative eigenstate's occupation density found by the means of gTBA

Relaxation towards the steady state After a global quench

$\langle O(t) \rangle = e^{-\Gamma t} f(t) + g(t) + \langle O \rangle_{\rho}$

Relaxation towards the steady state After a global quench

*with respect to fundamental fields, cf. Jordan-Wigner strings

$\langle O(t) \rangle = e^{-\Gamma t} f(t) + g(t) + \langle O \rangle_0$ $O |oca|^*$: $f(t) \sim g(t) \sim t^{-\alpha} e^{2iMt}$ O semi-local*: $f(t) \sim t^{-\alpha} e^{2iMt}$, g(t) = 0

Decomposing on the basis of eigenstates $\{\lambda\}$ again: $\langle O(t) \rangle = \sum e^{\delta s_{\lambda} - \delta s_{\rho} + i(\omega_{\lambda} - \omega_{\rho})t} \langle \lambda \mid O \mid \rho \rangle$

Decomposing on the basis of eigenstates $\{\lambda\}$ again: $\langle O(t) \rangle = \sum e^{\delta s_{\lambda} - \delta s_{\rho} + i(\omega_{\lambda} - \omega_{\rho})t} \langle \lambda | O | \rho \rangle$

Decomposing on the basis of eigenstates $\{\lambda\}$ again: $\langle O(t) \rangle = \rangle$

Annihilation pole axiom

Bound state axiom

 $e^{\delta s_{\lambda} - \delta s_{\rho} + i(\omega_{\lambda} - \omega_{\rho})t} (\lambda | \rho)$

Form Factors \mathcal{F} of operator OAxioms:

- 1. Scattering properties
- Crossing symmetry
- Locality 3.
- 4. Annihilation pole
- 5. Bound state

Decomposing on the basis of eigenstates $\{\lambda\}$ again: $\langle O(t) \rangle = \sum e^{\delta s_{\lambda} - \delta s_{\rho} + i(\omega_{\lambda} - \omega_{\rho})t} \langle \lambda | O | \rho \rangle$

Smirnov's decomposition formula: $\langle \lambda | O | \mu \rangle = \langle \lambda | \mu \rangle \mathcal{F}_0^O + \ldots + \mathcal{F}_{N+M}^O(\lambda_1 + i\pi, \ldots, \mu_M)$

Contour integration

Pole contribution $\sim e^{-\Gamma t} f(t)$

B. Bertini, D. Schuricht, F.H.L. Essler - "Quantum quench in the sine-Gordon model", J. Stat. Mech. (2014) P10035

Splitting the matrix element into singular and regular parts as $|\lambda\rangle \rightarrow |\rho\rangle$:

$\langle \lambda | O | \rho \rangle = \langle \lambda | O | \rho \rangle_{sing} + \langle \lambda | O | \rho \rangle_{reg}$

Saddle point approximation

J.S. Caux, F.H.L. Essler - "Time evolution of local observables after quenching to an integrable model" (Phys. Rev. Lett. 110, 257203 (2013)

Role of locality And semi-locality

- $l(\mathcal{O}) = \text{semi-locality index}$
- Derived from OPE of the UV-CFT theory: $\mathcal{O}(z)\Phi(w) \sim (z-w)^{-l(\mathcal{O})}\Psi(z)$

Vanishing regular parts of matrix elements between representative state and other eigenstates λ

• For example, I=1/2 for the spin field in Ising due to the Jordan-Wigner string

Role of locality And semi-locality

- l(0) = semi-locality index
- Derived from OPE of the UV-CFT theory: $\mathcal{O}(z)\Phi(w) \sim (z-w)^{-l(\mathcal{O})}\Psi(z)$

• For example, I=1/2 for the spin field in Ising due to the Jordan-Wigner string

Semi-local operators relax exponentially faster compared to local ones.

faster compared to local ones.

But why?

Semi-local operators relax exponentially

Entanglement entropy In 1D models

Entanglement entropy of finite segment A

Entanglement entropy In 1D models

- Renyì entropies S_n
- Replica trick:

$$S_n(l) = -tr_A(\rho_{A,n} \log \rho_{A,n})$$
$$S(l) = \lim_{n \to 1} S_n(l)$$

• Equal-time correlator of branch twist operators $T_n(a_1, t)$ and $T_n^{\dagger}(a_2, t)$

3 copies of the same QFT on the Euclidean space

Action of branch twist operator on local fields

Entanglement growth after a quench **Semi-infinite line**

- Subsystem A is now infinite
- of the operator $T_n(0,t)$ – clustering property of matrix elements
- Entanglement entropy growth:

$$S(t)/t = -\Gamma + \mathcal{O}\left(\frac{\log 2mt}{2mt}\right)$$

Evaluating two-point function turns into just studying the one-point function

 $mt \gg 1$

Entanglement growth after a quench **Semi-infinite line**

- Subsystem A is now infinite
- of the operator $T_n(0,t)$ – clustering property of matrix elements
- Entanglement entropy growth:

$$S(t)/t = -\Gamma + \mathcal{O}\left(\frac{\log 2mt}{2mt}\right),$$

Same value of damping exponent!

Evaluating two-point function turns into just studying the one-point function

 $mt \gg 1$

Entanglement growth after a quench Segment of length *l*

- Evaluating two-point function is easier on the Euclidean plane
- Entanglement entropy grows and saturates:

 $S(l,t) \simeq -\Gamma t$, t < l/2

 $S(l,t) \simeq -\Gamma l/2$, t > l/2

- Natural cutoffs

Calabrese-Cardy quasiparticle picture retrieved as a first approximation

Concusions

- General conclusion for integrable field theories \bullet
- Mainly related to the analytic structure of operator's Form Factors (semilocality mainly)
- Local memory vs non-local
- equilibrium values
- (Lieb-Liniger related system) by the means of out of equilibrium nonrelativistic limit

Entanglement promotes relaxation of semi-local observables towards their

• All these results can be mapped into their respective non-relativistic system

Concusions

- General conclusion for integrable field theories \bullet
- Mainly related to the analytic structure of operator's Form Factors (semilocality mainly)
- Local memory vs non-local
- equilibrium values
- (Lieb-Liniger related system) by the means of out of equilibrium nonrelativistic limit

Entanglement promotes relaxation of semi-local observables towards their

• All these results can be mapped into their respective non-relativistic system

Thank you!

Linked Cluster expansion And boundary initial state

- We choose the following boundary initial state: $|\psi\rangle = \exp\left\{\int_{0}^{+\infty} d\theta K(\theta) Z^{\dagger}(-\theta) Z^{\dagger}(\theta)\right\} |0\rangle$
- with finite volume regularisation
- Extra care in determining the non-exponentiating factors (g(t))
- Resum the expansion to get the full result

• Expand $\langle O(t) \rangle$ in terms of K-functions and cancel the divergent contributions

Before it's too late Ergodicity, thermalisation and relaxation

J. W. Gibbs

L. Boltzmann

Ideal gas

Before it's too late Ergodicity, thermalisation and relaxation

- System explores the whole space of energetically equivalent configurations
- After a transient period, the system is fully described by an equilibrium distribution function with temperature T

J. W. Gibbs

L. Boltzmann

What if it is quantum? **Or Eigenstate Thermalisation Hypothesis**

Form Factors Definition

A n-particle form factor of the operator O

$\mathcal{F}_{N}^{O}(\theta_{1},\ldots,\theta_{N}) = \langle 0 \mid O \mid \theta_{1},\ldots,\theta_{N} \rangle$

Form Factors **Recovering full matrix elements**

$\mathcal{F}_{N+1}^{O}(\xi_1 + i\pi, \theta_1, \dots, \theta_N) = \langle \xi_1 | O | \theta_1, \dots, \theta_N \rangle_{conn}$

$\mathcal{F}_{N}^{O}(\theta_{1},\ldots,\theta_{N}) = \langle 0 \mid O \mid \theta_{1},\ldots,\theta_{N} \rangle$

Crossing symmetry

Form Factors Watson's equations

$\mathcal{F}_{N}^{O}(\theta_{1},\ldots,\theta_{N}) = \langle 0 \mid O \mid \theta_{1},\ldots,\theta_{N} \rangle$

Form Factors Watson's equations

 $\mathscr{F}_N^O(\theta_1,\ldots,\theta_{i+1},\theta_i,\ldots,\theta_N) = S(\theta_i - \theta_{i+1})\mathscr{F}_N^O(\theta_1,\ldots,\theta_i,\theta_{i+1},\ldots,\theta_N)$

 $\mathscr{F}_N^O(\theta_1 + 2i\pi, \dots, \theta_N) = e^{2i\pi l(O)} \mathscr{F}_N^O(\theta_2, \dots, \theta_N, \theta_1) = \prod S(\theta_i - \theta_1) \mathscr{F}_N^O(\theta_1, \dots, \theta_N)$ i=2

$\mathcal{F}_N^O(\theta_1, \dots, \theta_N) = \langle 0 \mid O \mid \theta_1, \dots, \theta_N \rangle$

Form Factors Annihilation pole axiom

 $-iRes_{\bar{\theta}=\theta}\mathscr{F}_{N}^{O}(\bar{\theta}+i\pi,\theta,\theta_{1},\ldots,\theta_{N-1})$

Annihilation pole axiom

$$\mathbf{x}_{2} = \left[1 - e^{2i\pi l(O)} \prod_{i=1}^{N-2} S(\theta_i - \theta)\right] \mathcal{F}_{N-2}^{O}(\theta_1, \dots, \theta_{N-2})$$

sing model ε and σ operators

- Massive fermionic theory, quench in the mass in the disordered phase $m_0 \rightarrow m$
- Free fermions S-matrix S = -1
- ε local vs σ semi-local wrt the fundamental field μ : $\sigma(z,\bar{z})\mu(0,0) \sim \frac{1}{\sqrt{2}|z|^{\frac{1}{4}}} \left(e^{i\frac{\pi}{4}} \sqrt{z}\psi(0) + e^{-i\frac{\pi}{4}} \sqrt{\bar{z}}\bar{\psi}(0) \right), \ l(\mathcal{O}) = \frac{1}{2}$

Transverse field sing model $\hat{\sigma}_{i}^{z}$ and $\hat{\sigma}_{i}^{x}$ operators

- Lattice theory: L-1 $H = \sum_{i=1}^{L-1} \left[J \hat{\sigma}_{i}^{x} \hat{\sigma}_{i+1}^{x} + h \hat{\sigma}_{i}^{z} \right]$ i=1
- Quench in the coupling $h_0 \rightarrow h$
- $\hat{\sigma}_i^z$ local vs $\hat{\sigma}_i^x$ semi-local wrt the fermionic field \hat{c}_i

After Jordan-Wigner and Bogoliubov transformations we have free fermions

Energy/transverse spin operator

D. Fioretto, G. Mussardo - "Quantum Quenches in Integrable Field Theories", *New J.Phys.12:055015,2010*P. Calabrese, M. Fagotti, F.H.L. Essler - "Quantum Quench in the Transverse Field Ising chain I", *J. Stat. Mech. (2012) P07016*

Spin/longitudinal spin operator

D. Schuricht, F.H.L. Essler - "Dynamics in the Ising field theory after a quantum quench", J. Stat. Mech. (2012) P04017
P. Calabrese, M. Fagotti, F.H.L. Essler - "Quantum Quench in the Transverse Field Ising chain II", J. Stat. Mech. (2012) P07022

Sinh-Gordon mode Vertex operator and twist operator τ

- Lagrangian field theory: $\mathscr{L} = \frac{1}{2} (\partial \phi)^2 - \frac{1}{2}$
- Interacting theory with no bound states and non-trivial S-matrix: $S(\theta) = \frac{\sinh \theta - i \sin B\pi}{\sinh \theta + i \sin B\pi}$
- Local vertex operator $e^{i\alpha\phi}$ vs semi-local CFT twist operator τ

$$\frac{\mu^2}{g^2}(\cosh g\phi - 1)$$

Vertex operator

E. Di Salvo, D. Schuricht - "Quantum quenches in the sinh-Gordon and Lieb-Liniger models", *J. Stat. Mech. (2023) 053107*

CFT Twist operator

Vertex operator

E. Di Salvo, D. Schuricht - "Quantum quenches in the sinh-Gordon and Lieb-Liniger models", J. Stat. Mech. (2023) 053107

CFT Twist operator

Same behaviour of Ising's spin operator $\sigma(t)$

Sine-Gordon mode Vertex operators

- Lagrangian field theory:
- Interacting theory of solitons with bound states (breathers)
- (A. Cortes Cubero et al., J. Stat. Mech. 2017)

$\mathscr{L} = \frac{1}{2} (\partial \phi)^2 - \frac{\mu^2}{\beta^2} (\cos \beta \phi - 1)$

• Local vertex operator $e^{i\beta\phi}$ (V. Gritsev et al., PRL 2007) vs semi-local one $e^{i\beta\phi/2}$

Sine-Gordon model Vertex operators

- Lagrangian field theory: 0
- Interacting theory of solitons with bound state \bullet
- Local vertex operator $e^{i\beta\phi}$ (V. Gritsev et (A. Cortes Cubero et al., J Stat. Meck

$\mathscr{L} = \frac{1}{2} (\partial \phi)^2 - \frac{\mu^2}{\beta^2} (\cos \beta \phi - 1)$ eathers) (L 2007) vs semi-local one $e^{i\beta\phi/2}$

Branch twist operator's form factors

- Extension of S-matrix to particles in different replicated spaces
- Annihilation pole from adjacent sheets μ and $(\mu + 1)$
- Semi-locality index is now a matrix mixing different sectors of the theory

