for

Flow-based Sampling **Effective String Theory Turin Lattice Meeting 2023**

Based on: M.Caselle, <u>EC</u>, A.Nada, M. Panero

- JHEP 07 (2022) 015, arxiv:2201.08862 M. Caselle, <u>EC</u>, A. Nada
- arXiv: 2307.01107 (under review JHEP)
- arxiv: 2309.14983 (Lattice 2023 PoS)

Elia Cellini 22/12/2023

UNIVERSITĂ **DI TORINO**

1. Effective String Theory

2. Normalizing Flows

3. Stochastic Normalizing Flows

4. Conclusion

Outine

Effective String Theory (**EST**) is a powerful tool to study **confinement** in **Yang-Mills** theories

Effective String Theory (EST) is a powerful tool to study confinement in Yang-Mills theories

Effective String Theory (**EST**) is a powerful tool to study **confinement** in **Yang-Mills** theories

The main choice for S_{EST} is the Nambu-Goto action:

 $S_{NG}[\phi] =$

Yang-Mills theories. [Aharony and Komargodski; 1302.6257], [Brandt and Meineri; 1603.06969], [Caselle; 2104.10486]

Analytical problems

- **Correlation functions** (e.g. width σ)
- **Partition functions** of higher order corrections

$$\sigma \int d\xi^2 \sqrt{g}$$

Anomalous at quantum level \rightarrow **<u>effective</u>**, <u>large-distance</u> <u>description</u> of

$$\mathcal{N}^2$$
)

Lattice Nambu-Goto String

- d=2+1 target Yang-Mills
- σ string tension
- Λ : square lattice of size $L \times R$, a = 1
- $\phi(x) = \phi(\tau, \epsilon) \in \mathbb{R}$
- $\phi(\tau + L, \epsilon) = \phi(\tau, \epsilon)$
- $\phi(\tau,0) = \phi(\tau,R) = 0$

[Caselle, <u>EC</u>, Nada; 2307.01107]

Lacks of numerical methods

Numerical problems:

- Strong <u>non-linearity</u> → <u>critical</u> theory (<u>Critical</u> <u>Slowing</u> <u>Down</u>)
- Estimation of **partition functions**

Normalizing Flows

A Normalizing Flow (NF) g_{θ} is a **parametric**, **invertible** and **differentiable** function: [Rezende+; 1505.05770]

$\phi = g_{\theta}(z)$ $g_{\theta}: q_0 \to q_{\theta} \simeq p$

$q_{\theta}(\phi) = q_0(g^{-1}(\phi)) |J_g|^{-1}$

Learning Boltzmann Distributions

NFs can be trained to $q_{\theta} \simeq p(\phi)$ with $p(\phi) = \exp(-S[\phi])/Z$ by minimizing the reverse Kullback-Leibler divergence: [Albergo+; 1904.12072][Noé+; 1812.01729]

Sampling Boltzmann Distributions

Partition functions and observables can be computed using a re-weighting procedure also called **Importance Sampling**: [Nicoli+; 2007.07115]

 $\langle \mathcal{O} \rangle_{\phi \sim p} = \frac{1}{Z} \langle \mathcal{O} \tilde{w} \rangle_{\phi \sim q_{\theta}} \qquad Z = \langle \tilde{w} \rangle_{\phi \sim q_{\theta}} \qquad \tilde{w} = \frac{e^{-S[\phi]}}{q_{\theta}(\phi)}$

Uncorrelated!

Partition functions!

Continuous Normalizing Flows

Continuous NFs (CNFs) are NFs in which the flow g_{θ} is the solution of a Neural **Ordinary Differential Equation (NODE):**

 $K(t) \in \mathbb{R}^{F}$ temporal kernel of F Fourier coefficients

[Chen+;1806.07366],[Gerdes+,2207.00283] [Caselle, <u>EC</u>, Nada; 2307.01107]

 $\frac{d\phi(t)_x}{dt} = \sum_{y,f} W_{x,y,f} K(t)_f \phi(t)_y$ $\frac{d \log q_{\theta}(\phi(t))}{dt} = -Tr \left[\sum_{f} W_{f}K(t)_{f}\right]$

Proof of Concept: Partition Function

Large σ region ($\sigma \ge 40$), inferred coefficient: -0.1309(2), target: -0.1308996...

[Caselle, <u>EC</u>, Nada; 2307.01107]

Proof of Concept: Width

Large σ region ($\sigma \ge 5$), inferred coefficient: 0.55(5), target: 0.523598...

[Caselle, <u>EC</u>, Nada; 2307.01107][Gliozzi+; 1002.4888]

Stochastic Normalizing Flows

General equality that relates non-equilibrium experiments and equilibrium quantities:

[Jarzynski; cond-mat/9610209]

 $\langle e^{-W} \rangle_f = e^{-\Delta F}$

We can prove (and exploit) this equality using as "physical" system a Markov Chain Monte Carlo (MCMC) algorithm!

Non-Equilibrium MCMC

- 1. Thermalized q_0 "**prior**"
- 3. $p = \exp(-S_N)/Z_N \rightarrow "$ target" distribution

<u>Remark</u>: no thermalization during the processes.

2. $P_i \propto \exp(-S_i)$ change along the processes and satisfy detailed balance.

Non-Equilibrium MCMC

Forward probability density:

$$q_0(\phi_0) \prod_{n=0}^{N-1} P[\phi_i \to \phi_i]$$

Reverse probability density:

$$p(\phi_N) \prod_{n=0}^{N-1} P[\phi_{i+1} \rightarrow n=0]$$

$[i+1] = q_0(\phi_0)P_f[\phi_0, \dots, \phi_N]$

$[\phi_i] = p(\phi_N) P_r[\phi_N, \dots, \phi_0]$

Observe that:

$\ln \frac{q_0(\phi_0)P_f[\phi_0, \dots, \phi_N]}{p(\phi_N)P_r[\phi_N, \dots, \phi_0]} = S_N(\phi_N) - S_0(\phi_0) - Q - \Delta F = W(\phi_0, \dots, \phi_N) - \Delta F = W_d$ **First Law**

Where:

 $Q = \ln \frac{P_r[\phi_N, \dots, \phi_0]}{P_f[\phi_0, \dots, \phi_N]} = \sum_{n=0}^{N-1} \ln \frac{q_{n+1}(\phi_{n+1})}{q_{n+1}(\phi_n)} = \sum_{n=0}^{N-1} \left(S_{n+1}(\phi_{n+1}) - S_{n+1}(\phi_n) \right)$

Detailed Balance

Dissipated Work

Crooks Fluctuation Theorem

Thus:

 $\frac{q_0(\phi_0)P_f[\phi_0, ..., \phi_N]}{p(\phi_N)P_r[\phi_N, ..., \phi_0]} = \frac{\mathscr{P}_f(W_d)}{\mathscr{P}_r(-W_d)} = e^{W_d}$

Observe also:

 $1 = \left[\prod_{i=1}^{N} d\phi_{i} q_{0}(\phi_{0}) P_{f}[\phi_{0}, \dots, \phi_{N}] \right] \left(\frac{p(q_{0})}{q_{0}} \right)$ Q_0 i=0

Crooks Theorem

[Crooks; cond-mat/9901352]

$$\frac{\phi_N}{(\phi_0)P_f[\phi_0,\ldots,\phi_N]} = \langle e^{-W_d} \rangle_f$$

Jarzynski's equality

[Jarzynski; cond-mat/9610209]

Non-Equilibrium Ensemble

 $1 = \langle e^{-W_d} \rangle_f$

Equilibrium Quantity

- Interface free energy. [Caselle+; 1604.05544]
- SU(3) e.o.s. [Caselle+; 1801.03110]
- Running coupling [Francesconi+; 2003.13734]
- Entanglement entropy [Bulgarelli and Panero; 2304.03311]
- Topological freezing [Bonanno+; 2310.11979]

Equivalent to: **Annealed Importance Sampling** [Neal; physics/9803008]

Jarzynksi for LFT

Jarzynksi's equality has been exploited to obtain state-of-the-arts results in LFT:

The identities derived before are exact, however, the exponential average has an high **signal-to-noise** ratio.

In order to fight this problem, we want W_d to be "small"

Solution 1) Infinite MCMC steps \rightarrow quasi-static transformations \rightarrow "small" W_d

Numerical Problem

 $\left\langle e^{-W_d} \right\rangle_f$

Stochastic Normalizing Flows (SNFs)

Solution 2) use Machine Learning to minimize W_d

$$\phi_0 \longrightarrow g_{\theta}^1(\phi_0) \xrightarrow{P_1} \phi_1 \longrightarrow g_{\theta}^2(\phi_1) \xrightarrow{P_2} \dots \xrightarrow{P_N} \phi_N = \phi$$

Where g_A^l are NF layers with forward/reverse transition probability:

$$P[\phi_n \to \phi_{n+1}]$$

$$P[\phi_{n+1} \to \phi_n] = \delta(\phi_n - (g_{\theta}^n)^{-1}(\phi_{n+1}))$$

[Wu+; 2002.06707],[Caselle, <u>EC</u>, Nada, Panero; 2201.08862]

$$= \delta(\phi_{n+1} - g_{\theta}^n(\phi_n))$$

SNFs: Dissipated Work

We have now:

Where:

 $Q_{\theta} = \sum_{n=0}^{N-1} \left(S_{n+1}(\phi_{n+1}) - S_{n+1}(\phi_n) + \ln |\det J_{g_{\theta}^i}| \right)$

$W_{d}^{\theta} = W_{\theta}(\phi_{0}, ..., \phi_{N}) - \Delta F = S_{N}(\phi_{N}) - S_{0}(\phi_{0}) - Q_{\theta} - \Delta F$

We can now train a SNF to minimize W_d^{θ}

$\mathscr{L}(\theta) = \langle W_d^{\theta} \rangle_f = D_{KL}(q_0 P_f | | p P_r) \ge 0$

Measure how reversible the process is.

SNFs: Physics-Informed Design

In the $\sigma \rightarrow \infty$ region:

 $S_{NG}(\phi) \sim S_{FR}(\phi) + \dots$

Prior:

$$q_0(\phi_0) = \frac{1}{Z} e^{S_{FB}(\phi_0)}$$

• Design inspired by the TT integrable irrelevant perturbation. [Cavaglià+; 1608.05534],[Smirnov and Zamolodchikov; 1608.05499]

 $S_{FB}(\phi) = \frac{1}{2} \sum \left(\partial_{\mu} \phi(x) \right)^2$

MCMC update *i*:

 $S_i(\phi) = S_{NG}(\phi_i, \sigma_i);$

 $\sigma_i > \sigma_{i+1}$

SNFs: NG Partition Functions

inferred: -1.03(2), target: -1.047... inferred: -1.04(7), target: -1.047...

$\sigma = 1/10$, inferred: 1.09(8), target: 1.047...

[Caselle, E.C., Nada; 2309.14983][Caselle;1004.3875]

SNFs: NG Width

probability distribution!

- Flow-based application to Lattice Field Theory which is not a toy-model. 1. 2. State-of-the-art results for Effective String Theory.
- **3.** Toward the study of the "rigid" string:

$$S_{BNG} =$$

Concusion

We showed that (S)NFs can be successful applied to sample from the EST

 $S_{NG} + \gamma \mathcal{K}^4$

Thank you for your attention!

We want a program ables to compute: f(x) = y for a given input x

Classical programming:

Machine Learning

Machine Learning:

SNFs: Technical details

- Prior massless free boson and linear protocol in $t = 1/\sigma \rightarrow$ Inspired by Irrelevant Perturbations
- HMC for stochastic updates
- Affine coupling layers, 3 convolutional layers with $3 \times 3 \times 16$ kernels and a two channels output layer. Each blocks (even-odd) share the same network

- original SNF paper [Neal; physics/9803008]
- Sequential Monte Carlo: Generalization of AIS. [Dai+; 2007.11936]
- SNF idea reworked in CRAFT [Matthews+; 2201.13117]
- proposed also by Jarzynksi in 2011

[Vaikuntanathan and Jazynski; 1101.2612]

 FAB: combination of NFs and AIS. [Midgley+; 2208.01893]

• Annealed Importance Sampling: Equivalent to Jarzynski's equality. Used in the

An hybrid (deterministic/stochastic) approach with no neural networks has been

