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Nambu-Goto

The main choice for S;¢7 is the Nambu-Goto action:
Swel@l = o de \/8

Anomalous at quantum level — effective, large-distance description of

Yang-Mills theories.
[Aharony and Komargodski; 1302.6257], [Brandt and Meineri; 1603.06969],[Caselle; 2104.10486]

Analytical problems

Correlation functions (e.g. width cw?)

Partition functions of higher order corrections


https://arxiv.org/abs/1302.6257
https://arxiv.org/abs/1603.06969
https://arxiv.org/abs/2104.10486

Lattice Nambu-Goto String

v/ 1+ 0,0(x)*/ 6 - 1]

Sng(@) = o Z

XEA

- d=2+1 target Yang-Mills

.

- 0 string tension

- /\ :square lattice of size LX R, a = 1
- P(x) = @(7,€) € |
- p(t+ L,€) = ¢p(z, €)
- 9(7,0) = ¢(7,R) =0

[Caselle, EC, Nada; 2307.01107] UWZ — <¢(Ta R/2)2>1-

P(0)


https://arxiv.org/abs/2307.01107

Lacks of nume

Numerical problems:

Strong non-linearity — critical theory (Critical Slowing Down)
Estimation of partition functions

L x R=20 % 20 HMC
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Normalizing Flow

A Normalizing Flow (NEF) g, is a parametric, invertible and differentiable

function:
[Rezende+; 1505.05770]

8 Go= QoD b = g4(2) o) = qo(g~ @)1, |~


https://arxiv.org/abs/1505.05770

Learning Boltzmann Distributions

NFs can be trained to g, ~ p(¢) with p(¢p) = exp(—S[¢])/Z by minimizing the
reverse Kullback-Leibler divergence:

[Albergo+; 1904.12072][Noé+; 1812.01729]

Go(P) > 0.
p(P)

Dy (gyl1p) = [dqbqg(qb)log


https://arxiv.org/abs/1904.12072
https://arxiv.org/abs/1812.01729

Sampling Boltzmann Distributions

Partition functions and observables can be computed using a re-weighting
procedure also called Importance Sampling:

[Nicoli+; 2007.07115]

—SI¢]
qo(P)

| R _ _
(O) pp = E<@W>¢~% 2= W)y, W

3 3

Uncorrelated! Partition functions!



https://arxiv.org/abs/2007.07115

Continuous Normalizing FI

Continuous NFs (CNFs) are NFs in which the flow g, is the solution of a Neural
Ordinary Differential Equation (NODE):

d(0),
== yz;, W, K@) D),

dlog g,((1))

K(¢) € R" temporal kernel of F Fourier coefficients

[Chen+;1806.07366],[Gerdes+,2207.00283] [Caselle, EC, Nada; 2307.01107]


https://arxiv.org/abs/2307.01107
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/2207.00283

Proof of Concep

Large o region (o > 40), inferred coefficient: —0.1309(2), target: —0.1308996...

17.5 20.0

[Caselle, EC, Nada; 2307.01107]


https://arxiv.org/abs/2307.01107

Proof of Cc

Large o region (o > 3), inferred coefficient: 0.55(5), target: 0.523598...

[Caselle, EC, Nada; 2307.01107][Gliozzi+; 1002.4888]


https://arxiv.org/abs/2307.01107

Stochastic Normalizing Flows




Jarzynski’'s Equ

General equality that relates non-equilibrium experiments and equilibrium
qguantities:

[Jarzynski; cond-mat/9610209]

<€_W>f — e—AF

We can prove (and exploit) this equality using as “physical” system a Markov Chain
Monte Carlo (MCMC) algorithm!


https://arxiv.org/abs/cond-mat/9610209

Non-Equilibrium MCMC

P, Py ¢
— s L —> e TN

=@

2. P, x exp(—3,) change along the processes and satisfy detailed balance.

Py

_SO—>€

do = € 2

1. Thermalized g, “prior”

3. p = exp(—Sy)/Zy — "target” distribution

Remark: no thermalization during the processes.



Non-Equilibrium MCMC

Forward probability density:

N—1
ao(do) | | PLob; = bisi] = ao( )Pl ... by
=)

Reverse probability density:

N—1
P(¢N)HP (Dir1 = @il = p(DN)P LDy, - ... P
=0



Dissipated Wc

Observe that:

QO(¢O)P]‘[¢09 ce ¢N]
In———

=5 ) — Q- AF=W(,,...,py) — AF =W
p(¢N)P r[¢N9 DI00e ¢O] N(¢N) O(¢O) Q (¢O ¢N) d

First Law
Where:
0=1n Ploy, ... 4ol Zlnqn+1(¢n+1) Ail(S (b .)—S (¢))
Pf[¢() ~ qn+1(¢n) ~ n+1\n+1 n+1\'n

Detailed Balance



Crooks Fluctuation Theol

Thus:

do(Po)PA Dy, ---» Dyl PAWY) W, orooke TH
- _  __ _ - — € FOOKS eorem
p(¢N)Pr[¢N9 ce ¢O] ‘@r(_ Wd) q [Crooks; cond-mat/9901352]

Observe also:

pP(@NP Dy, ..., P ) _ (e_Wd>f

N
= da. P ey
Jg ¢zq0(¢0) f[¢0 ¢N] < QQ(¢O)Pf[¢O’ eny ¢N]


https://arxiv.org/abs/cond-mat/9901352

Jarzynski’s Equality

1 = (e‘Wd)f

|

= (e =e =) (0), = (0™,

N

Non-Equilibrium
Ensemble

Jarzynski’s equalit
[Jarzynski; cond-mat/9610209]

Equilibrium Quantity



https://arxiv.org/abs/cond-mat/9610209

Jarzynl

Jarzynksi’s equality has been exploited to obtain state-of-the-arts results in LFT:

Interface free energy.
[Caselle+; 1604.05544]

SU(3) e.o.s.

[Caselle+; 1801.03110]
Running coupling
[Francesconi+; 2003.13734]

Entanglement entropy
[Bulgarelli and Panero; 2304.03311]

Topological freezing
[Bonanno+; 2310.11979]

Equivalent to:

Annealed Importance Sampling
[Neal; physics/9803008]

T/T,


https://arxiv.org/abs/physics/9803008
https://arxiv.org/abs/1604.05544
https://arxiv.org/abs/2304.03311
https://arxiv.org/abs/2003.13734
https://arxiv.org/abs/1801.03110
https://arxiv.org/abs/2310.11979

Numerical Pr

The identities derived before are exact, however, the exponential average has an
high signal-to-noise ratio.
(e™ "),

In order to fight this problem, we want W, to be “small”

Solution 1) Infinite MCMC steps — quasi-static transformations — “small” W,



Stochastic Normalizing Flows (SNFs)

Solution 2) use Machine Learning to minimize W,

1 Py o) P, Y
Py — ge(¢()) — ¢ — g9(§b1) — .. Py =@
Where gé are NF layers with forward/reverse transition probability:
P[¢n — ¢n+1] — 5(¢n+1 _ gg(¢n))

Plppsr = ba) = (6, — (€)™ (i)

[Wu+; 2002.06707],[Caselle, EC, Nada, Panero; 2201.08862]


https://arxiv.org/abs/2002.06707
https://arxiv.org/abs/2201.08862

SNFs: Dissipated Work

We have now:

W3 = Wy, ..., dy) — AF = S(hy) = So(ehg) — Qp — AF

Where:

N—-1

Q@ — Z (Sn+1(¢n+1) _ Sn+1(¢n) T ln‘ det Jgé" )

n=0



SNFs: Training

We can now train a SNF to minimize Wg

CACE <W5>f = Dg;(qoP| |[pP,) 2 0

4

(W, > AF # Second Law!

Measure how reversible the process is.



SNFs: Physics-Informed Desig

In the 6 — o0 region:

|
SnG(@) ~ Sep(P) + ... Sea(#) = = ) (0,0
Prior: MCMC update i:
|
qO(§b0) — EeSFB(%) Si(¢) — SNc;(¢i, 5;‘)2 O, > O;

- Design inspired by the 11 integrable irrelevant perturbation.
[Cavaglia+; 1608.05534],[Smirnov and Zamolodchikov; 1608.05499]



https://arxiv.org/abs/1608.05534
https://arxiv.org/abs/1608.05499

SNFs: NG Par

inferred: —1.03(2), target: —1.047... inferred: —1.04(7), target: —1.047...

o =1/30 o = 1/50

e PI-SNF
Theory




o

SNFs: I

o = 1/10, inferred: 1.09(8), target: 1.047...

—— (Conjecture

e PI-SNF

[Caselle, E.C., Nada; 2309.14983][Caselle;1004.3875]


https://arxiv.org/abs/2309.14983

Conclu

We showed that (S)NFs can be successful applied to sample from the EST
probability distribution!

1. Flow-based application to Lattice Field Theory which is not a toy-model.

7. State-of-the-art results for Effective String Theory.

3. Toward the study of the “rigid” string:

SeNG = OnG T y H*



Thank you for your attention!




Machine Learning

We want a program ables to compute: f(x) = y for a given input x

Classical programming: Machine Learning:

Input: x (x,y) € D

y ¢

Machine Hypothesis

Output: y

| Learning
. < Algorithm




SNFs: Technical de

- Prior massless free boson and linear protocol int = 1/0 — Inspired by
Irrelevant Perturbations

- HMC for stochastic updates

- Affine coupling layers, 3 convolutional layers with 3 X 3 X 16 kernels and a two
channels output layer. Each blocks (even-odd) share the same network

12/16



SNFs: Related

Annealed Importance Sampling: Equivalent to Jarzynski’s equality. Used in the
original SNF paper
[Neal; physics/9803008]

Sequential Monte Carlo: Generalization of AlS.
[Dai+; 2007.11936]

SNF idea reworked in CRAFT
[Matthews+; 2201.13117]

An hybrid (deterministic/stochastic) approach with no neural networks has been
proposed also by Jarzynksi in 2011
[Vaikuntanathan and Jazynski; 1101.2612]

FAB: combination of NFs and AlS.
[Midgley+: 2208.01893]


https://arxiv.org/abs/physics/9803008
https://arxiv.org/abs/2007.11936
https://arxiv.org/abs/2201.13117
https://arxiv.org/abs/1101.2612
https://arxiv.org/abs/2208.01893

