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Why is this relevant?

• Object «recognition» is a popular learning task
• Segmentation, detection and counting objectives

• Applications also in physics
• 3D semantic segmentation task on simulated LArTPC samples [1]

• Particle identification in cloud chamber
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Why is this relevant?

• Object «recognition» is a popular learning task
• Segmentation, detection and counting objectives

• Applications also in physics
• 3D semantic segmentation task on simulated LArTPC samples [1]

• Particle identification in cloud chambers

• Semantic segmentation of microstructural constituents in SEM micrograph of 
ultrahigh carbon steel [2]

• Semantic Segmentation of Radio-Astronomical Images [3]

• Seismic facies interpretation [4]
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Why is this relevant?

• Object «recognition» is a popular learning task
• Segmentation, detection and counting objectives

• Applications also in physics

• Different applications typically share similar challenges

•Aim
• Investigate loss effectiveness

• Explore and compare several evaluation strategies
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Background

Fluorescent Microscopy

• Physics-based imaging technique

• Exploits light absorption/emission properties

• Used to mark/tag/stain biological compounds

Applications

• Very popular in life science

• Torpor onset [5, 6, 7]

• Cytoplasmatic neuronal structures

• Variability in shape, size and color hue

• Goal: count stained structures
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[6] Morelli, R., et al.: Automating cell counting in fluorescent microscopy through deep learning with c-ResUnet. 

Scientific Reports 11(1), 22920 (2021).

[7] Clissa, L., et al.: Fluorescent neuronal cells v2: Multi-task, multi-format annotations for deep learning in microscopy.  

arXiv preprint (in review at Scientific Data) (2023)

https://doi.org/10.1038/s41598-021-01929-5
https://arxiv.org/pdf/2307.14243.pdf


Problem

Manual processing

Time-consuming

Error-prone

Subjectivity of borderline cases

Hard to adapt Deep 

Learning solutions

Domain shift

Few in-domain annotated datasets

How to train? How to evaluate?
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Visual by kDimensions

https://kdimensions.com/


Challenges

Class imbalance
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Challenges

Class imbalance

Overcrowding

Noisy labels

Artefacts
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Loss functions

Which loss should we choose 
to address or mitigate these 
challenges?

27/11/2023
Impact of loss functions and metrics on generalization –

Luca Clissa @ ML-INFN meeting
14



de facto standard for classification
→ suitable for binary segmentation

weighted version mitigates class imbalance
→ assign higher weights to underrepresented class

No explicit segmentation focus

No explicit object-level error focus

No explicit noise and systematics focus

Weighted Binary Cross Entropy [8]
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Oversample wrong predictions, focus on hard examples
→ indirectly helpful for any challenge

No explicit segmentation focus

No explicit object-level error focus

Focal Loss [9]
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targets segmentation performance directly
→ optimization aligned with learning goal

No explicit object-level error focus

No explicit noise and systematics focus

Low impact of small objects
→ poor generalization WRT object size

Dice Loss [10]
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Brings together advantages of Dice and Focal losses
→ direct focus on segmentation
→ indirectly helpful for any challenge

No explicit object-level error focus

Focal-Tversky Loss [11]
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Ablation studies

• 4 alternative losses
• Weighted Binary Cross Entropy (BCE): 𝑤𝑐𝑒𝑙𝑙 = 50, 100, 200;𝑤𝑏𝑘𝑔𝑑 = 1
• Dice Loss
• Focal Loss
• Focal Tversky Loss

• 2 combined losses
• CombinedLoss = 𝜆1𝐵𝐶𝐸 + 𝜆2Dice + 𝜆3Focal
• CombinedFTLoss = 𝜆1𝐵𝐶𝐸 + 𝜆2Dice + 𝜆3Focal Tversky

• Balanced: 𝜆1 = 0.3, 𝜆2 = 0.3, 𝜆3 = 0.4
• Overcrowd: 𝜆1 = 0.2, 𝜆2 = 0.5, 𝜆3 = 0.3
• CellViT: 𝜆1 = 0.5, 𝜆2 = 0.3, 𝜆3 = 0.5
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Evaluation Metrics

• Segmentation

• Mean Intersection over Union (mIoU) = 
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛

• threshold: 0.4

27/11/2023 20
Impact of loss functions and metrics on generalization -- 

Luca Clissa @ ML-INFN meeting

True

Predicted



Evaluation Metrics

• Segmentation

• Mean Intersection over Union (mIoU) = 
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛

• threshold: 0.4

27/11/2023 21
Impact of loss functions and metrics on generalization -- 

Luca Clissa @ ML-INFN meeting

True

Predicted



Evaluation Metrics

• Segmentation

• Mean Intersection over Union (mIoU) = 
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛

• threshold: 0.4
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• threshold: 40 pixels (mean cell diameter)
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Evaluation Metrics

• Segmentation

• Mean Intersection over Union (mIoU) = 
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛

• threshold: 0.4

• Detection
• Centers distance

• threshold: 40 pixels (mean cell diameter)

• Counting
• Mean Absolute Error
• Median Absolute Error

• Mean Percentage Error:     
𝑛𝑡−𝑛𝑝

max 𝑛𝑡,1
∗ 100

27/11/2023 24
Impact of loss functions and metrics on generalization -- 

Luca Clissa @ ML-INFN meeting

True

Predicted

d



Segmentation & Detection
Loss F1 score (IoU) F1 score (distance)

BCE: medium
0.673±0.017 0.827±0.022

BCE: high
0.663±0.033 0.846±0.013

BCE: low
0.687±0.017 0.825±0.020

CombinedFT: overcrowd
0.740±0.029 0.848±0.026

CombinedFT: balanced
0.744±0.022 0.853±0.022

CombinedFT: CellViT
0.728±0.048 0.844±0.030

Combined: overcrowd
0.721±0.023 0.837±0.033

Combined: balanced
0.735±0.034 0.845±0.029

Combined: CellViT
0.742±0.023 0.849±0.020

Dice
0.735±0.020 0.847±0.018

Focal Tversky
0.781±0.002 0.897±0.003

Focal
0.614±0.027 0.780±0.034
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Counting

BCE: medium BCE: high BCE: low
CombinedFT: 

overcrowd

CombinedFT: 

balanced

CombinedFT: 

CellViT

Combined: 

overcrowd

Combined: 

balanced

Combined: 

CellViT
Dice Focal Tversky Focal

MAE 2.286±0.245 2.583±0.263 2.151±0.171 1.674±0.161 1.643±0.144 1.791±0.406 1.774±0.132 1.674±0.166 1.651±0.188 1.700±0.113 1.220±1.115 1.517±0.365

MedAE 0.9±0.224 1±0 0.3±0.447 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0.1±0.224 0.2±0.4

MPE 21.498±4.679 23.281±2.637 18.079±3.791 9.682±3.221 8.465±1.859 9.968±3.163 10±3.160 9.322±2.074 9.249±3.039 10.621±3.247 6.373±1.607 12.747±3.525



Out-of-sample generalization
[12] S-BSST265 dataset

27

https://www.nature.com/articles/s41597-020-00608-w


Conclusions

• Focal Tversky loss overperforms other losses

• Still some trouble separating crowded objects
→ careful post-processing needed (hole filling, small objects, watershed)

• Combined losses are competitive
• Better tuning of lambda weights

• Generalization
• High variability

• Dedicated augmentation may help

• Panoptic loss → single object errors

• Multiple metrics enable comprehensive assessment
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Thanks for 
your attention!

Questions?
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Backup
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Torpor onset

• Very popular in life science
• Torpor onset [1]

• Cytoplasmatic neuronal
structures

• Variability in shape, size and 
color hue

• Goal: count stained structures

[1] Hitrec, T., et al.: Neural control of fasting-induced torpor in mice. 

Scientific Reports 9(1) (oct 2019).
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Contributions

• Semantic segmentation using c-ResUnet [2] and Fluorescent
Neuronal Cells v2 dataset (FNC v2) [3]

• Show the impact of loss functions on model performance
• 60 ablation studies

• 6 loss functions

• Inspect pros and cons of several evaluation metrics

• Discuss characteristics affecting out-of-sample generalization

[2] Morelli, R., et al.: Automating cell counting in fluorescent microscopy through deep learning with c-ResUnet. 

Scientific Reports 11(1), 22920 (2021).

[3] Clissa, L., et al.: Fluorescent neuronal cells v2: Multi-task, multi-format annotations for deep learning in microscopy. 

arXiv preprint (submitted to Scientific Data) (2023)
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Class imbalance
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0.61
0
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0.09
0.34
0.68
1.07
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quantile

mean
s.d.
min
10%
25%
50%
75%
90%
max
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756k
19.57
92.39
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291.10
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Ablation studies configurations
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Training setup

• Adam optimizer

• Learning rate test for initial LR

• 200 epochs

• Cyclical lerarning rates

• Best model on validation dice coefficient
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,

,

Loss functions

• Weighted Binary Cross Entropy: higher weight to underrepresented class

• Dice Loss: targets segmentation performance directly, low impact of small objects

• Focal Loss: oversample hard examples

• Focal Tversky Loss: bring together advantages of Dice and Focal losses
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