# Measurements of CCE with pad sensors with a low intensity electron beam

P. Grutta, University of Padua and INFN Padua, 11/01/24





HELMHOLTZ





## **Table of contents**

Scientific context and scope

### Experimental setup

### Beam

### DUT

- Sapphire sensors
- Readout and Methodology
- Theory

### Analysis

- CCE(V) with HV
- CCE(Q) with beam charge
- Results

### Scientific context and scope

- The scientific context is LUXE's R&D campaign to design and characterize a radiation-hard sapphire radiation detector for high-energy Compton beam monitoring. The typical beam conditions at LUXE is a bunch of 10<sup>9</sup> 16 GeV photons, distributed over 2x2 cm<sup>2</sup>.
- The scope for the Frascati-BTF 9-11 May 2022 is characterization of the response of a simplified sapphire 'pad' sensor (prototype). This is quantified by the charge collection efficiency

$$CCE \equiv \frac{Q_{collected}}{Q_{ionisation}}$$

defined as the ratio between the collected charge and the charge created by ionization by the incident radiation.

The CCE is measured as a function of both the external biasing HV and the bunch charge of the electron beam – that is CCE(V) and CCE(Q).

## **Experimental setup. Beam**



Figure 1.

Beam Test Facility (BTF) at INFN Frascati National Laboratories used in **parasitic mode** in BTF1-hall.

- The typical beam setup had
  - a bunched 10Hz e<sup>-</sup> beam;
  - energy of 300MeV;
  - xy-profile gaussian with typical sigma of  $(\sigma_x, \sigma_y) = (2.1, 1.8) mm$
- A FitPix silicon detector measures the **beam shape**.
- A lead-glass calorimeter measures the beam energy.

## **Experimental setup. DUT**

- Stack of 2 identical PCB, separated by 2cm
   Sapphire detector (top)
   2x amplifiers (bottom)
- With respect to the beam, we have:
   upstream PCB with 110um sapphire.
   downstream PCB with 150um sapphire.
- The front cover is replaced with a thin Al-foil (for EM shielding) to reduce e-beam secondary showers. There is no beam exit window.



#### Figure 2.

#### University and INFN Padova

## **Experimental setup. Sapphire sensors**

- Single crystal 2-inch (d = 50.8mm) sapphire wafer <0001> double-side polished, with thickness:
  - 110um (Situs GmbH, Germany) and
  - 150um (UniversityWafers, USA).
- Top surface is metallized with a 4 pads, with small (large) pads of  $r_{SP} = 0.8$ mm ( $r_{LP} = 2.75$ mm).
- Bottom surface is metallized with a ground plane with half-moon shape.

The two pads 2, 4 are wire-bonded to the PCB and connected to the amplifiers.



**Figure 3.** Picture of the 110um sensor after wire-bonding of the large pad.

## **Readout and Methodology**

- Each pad LP/SP is routed to an independent 200mV/fC charge sensitive amplifier and signal readout of charge collected is done with a digital oscilloscope.
  - The **charge deposited** is calculated (Geant4) from the e.dep. in the pad cylindrical volume  $(Q_{dep} = \frac{E_{dep}}{27eV} \cdot e)$ , neglecting hole charge (as in the literature).

Beam-related systematics are evaluated with a Geant4-MC.

- Charge collection the E-field fringes is estimated with an Allpix2 MC simulation:
   negligible (3%) for the LP;
   important (7-16%) for SP.
- **High-voltage** scan in the range ■  $V_{bias} \in [0, 800]$  V, with sparks at higher V.
- Beam-charge scan in the regions
  up to 8ke/bunch at 100V;
  up to 80ke/bunch at 0V.,



 $CCE \equiv$ 

ionisation

Figure 4.

DESY.

## Analysis. Theory



- If we assume the following conditions to hold
  - The detector is planar (thickness d is negligible compared to other dimensions)
  - The transport properties and the electric field are uniform in whole volume of the sensor.
  - The free charge in stationary conditions is negligible and its generation, due to a photon (or a particle) absorption, is instantaneous.
  - Diffusion and detrapping phenomena are negligible and the number density of charge carries decrease with time as  $\sim e^{-t/\tau}$ .

The CCE contribution from a localized initial charge deposited at  $y_0$  is

$$\text{CCE}_{e}(y_{0}) = -\frac{f_{d}}{d} \cdot \int_{y_{0}}^{0} dy \; e^{-\frac{y-y_{0}}{(\mu\tau)_{e}E_{0}}} = -V f_{d} \; \frac{(\mu\tau)_{e}}{d^{2}} \left(1 - e^{\frac{y_{0}}{(\mu\tau)_{e}E_{0}}}\right) \tag{15}$$

$$\operatorname{CCE}_{h}(y_{0}) = \frac{f_{d}}{d} \cdot \int_{y_{0}}^{d} dy \; e^{-\frac{y-y_{0}}{(\mu\tau)_{h}E_{0}}} = V f_{d} \; \frac{(\mu\tau)_{h}}{d^{2}} \left(1 - e^{-\frac{d-y_{0}}{(\mu\tau)_{h}E_{0}}}\right) \tag{16}$$

If a uniform distribution of charge along a track (i.e., the MIP case) is considered, by integrating (15)+(16) over the thickness  $y_0$  we get the CCE(V) we are looking for

$$CCE(V) = f_d k \left[ 1 + k \left( \exp\left(-\frac{1}{k}\right) - 1 \right) \right]$$

*f<sub>d</sub>* ∈ [0,1] – the effective fraction of pairs propagating in sapphire;

with 
$$k \equiv \frac{\mu_e \tau_e}{d^2} V$$

## **Analysis.** Theory



- If we assume the following conditions to hold
  - The detector is planar (thickness d is negligible compared to other dimensions)
  - The transport properties and the electric field are uniform in whole volume of the sensor.
  - The free charge in stationary conditions is negligible and its generation, due to a photon (or a particle) absorption, is instantaneous.
  - Diffusion and detrapping phenomena are negligible and the number density of charge carries decrease with time as  $\sim e^{-t/\tau}$ .

The CCE contribution from a localized initial charge deposited

If a uniform distribution of charge along a track (i.e., the MIP c thickness  $y_0$  we get the CCE(V) we are looking for

$$CCE(V) = f_d k \left[ 1 + k \left( \exp\left(-\frac{1}{k}\right) - 1 \right) \right]$$



CCE at Frascati-BTF with sapp. pad sensors

#### University and INFN Padova

## Analysis. CCE(V)

Short runs of 1k events at low beam charge (500e) scanning the HV in 100V steps.

#### Results

- Typical efficiency of 14% (12%) for the  $110\mu m$  (150 $\mu m$ ) at 1kV.
- Typical charge carriers drift distance small w.r.t. the sensor thickness (*linear regime* of the CCE(V) eq.).
- The  $(\mu\tau)_e$  product is extracted from the fit:
  - ► for the 110µm  $(\mu \tau)_e \in [1.6, 2.4] \, \mu \text{m}^2 \text{V}^{-1}$
  - ► for the 150µm  $(\mu\tau)_e \in [2.4, 3.1] \,\mu\text{m}^2\text{V}^{-1}$



## Analysis. CCE(Q)

Short runs of 1k events at low beam charge (500e) scanning the HV in 100V steps.

#### Results

- Typical efficiency of 14% (12%) for the 110μm (150μm) at 1kV.
- Typical charge carriers drift distance small w.r.t. the sensor thickness (*linear regime* of the CCE(V) eq.).
- The  $(\mu\tau)_e$  product is extracted from the fit:
  - ► for the 110µm  $(\mu \tau)_e \in [1.6, 2.4] \, \mu \text{m}^2 \text{V}^{-1}$
  - ► for the 150µm  $(\mu\tau)_e \in [2.4, 3.1] \,\mu\text{m}^2\text{V}^{-1}$

Linear dependence of CCE with beam bunch charge up to 40k e/bunch.



**Figure 8.** Collected charge (large pad) as a function of the beam charge. Top: at HV =100V. Bottom: at HV=0V.

#### 12

## Analysis. Summary for (μτ)



Large systematics  $\rightarrow$  in the other TBs beam monitoring DAQ has been implemented.

- There are differences with respect to the literature [DOI 10.1088/1748-0221/10/08/P08008]:
  - the CCE (at equal E-field) of the samples does not vary much (2-3%) but is small (i.e., the 10% reported);
  - the extracted  $(\mu \tau)_e$  in the range [1.6, 3.1]  $\mu m^2 V^{-1}$  are one order of magnitude smaller;

European XFEL

## **Conclusions and open points**

- Hints of **residual field** in the 110um-thick detector (slide 11).
- Typical CCE of 13% (10%) at 1kV for 110um (150um) sensor.
- Higher CCE for the 150um for any given E-field (V/um).
- The CCE with reverse bias (pad at GND) are higher (2-3%). Why?

CCE at Frascati-BTF with sapp. pad sensors

University and INFN Padova

# backup

European XFEL

DESY.

## **Experimental setup. Geometry**



**Figure 2.** Placement of the detectors along the beam line. Left: from right to left of: the 50 um Ti-window terminating the beam-pipe; 33 cm of air; silicon vertex detector (fitpix); 22 cm of air; DUT; 10 cm of air; lead-glass calorimeter. Right: the DUT assembly in its final position on the movable table.

15

#### 16

## Analysis. CCE(V) – reverse V<sub>bias</sub>

High-voltage scans from 0 to 1.1kV with a gaussian beam  $(\sigma_x, \sigma_y) = (2, 1.8)$  mm with avg. beam multiplicity (bunch charge) of 500e and 1000e. Small runs of 1k events to accommodate DAQ and minimize beam position drift systematics.



Figure 16: Scan of the charge collection efficiency as a function of the reverse biasing voltage  $-V_{\text{bias}}$ . Statistical uncertainties are attached to data points. Left: CCE for the large pad (r=2.75mm). Right: CCE for small pad (r=0.8mm). Blue (red) line color for the 110um (150um) wafer.

# **Experimental tests**

1. Sapphire wafers characterization

2. Test beams

European XFEL

## **Experimental campaigns**

- A long experimental campaign, starting since May 2022, is ongoing to investigate sapphire properties as radiation detector, from prototypes (pad-sensor, 4-strip) to the present GBP design.
  - Sapphire wafers quality control and characterization.
- Test beams. Experimental activity and support from simulations:
  - TB1-pad at INFN BTF (Frascati, Italy) CCE and Allpix<sup>2</sup> for fringe effects;
  - TB2-4 strip at CLEAR (CERN) evaluation of the CCE and accumulated dose from an electron beam;

TB3-192, TB4-192, TB5-192 evaluation of deposited charge for CCE calculation. Estimate of systematic uncertainties.

Sapphire pads (May 22, INFN-LNF)





Sapphire 4-strip

Sapphire (Tomsk) 192-strip (Mar. 23, CERN)



Sapphire (FBK) 192-strip (Jun. 23-today CERN)





## Sapphire from several manufacturers tested

- 4x150µm from UniversityWafer Inc. (USA)
- 3x110µm from Wuppertal (Germany)

Sapphire wafers quality control and

characterization

Optical and electron microscopy are used to inspect the samples to characterize the metallization: sizes, thickness, composition



#### University and INFN Padova



DESY.

## Test beams: rationale, challenges, progresses

**Objectives** outline of the test beams:

- 1. Charge collection efficiency (CCE) as a function of the biasing voltage  $\rightarrow$  **CCE(V)** pad-sensor
- 2. CCE(V), strip uniformity & relative eff. as a function of the absorbed dose  $\rightarrow$  rad.-damage 4-strip
- 3. Electronics system test (PSU, FERS) with the final detector design 192-strip
- Several challenges faced early tests (i.e., data synchronization, small 4-strip w.r.t. the beam leading to large systematic errors, beam stability, etc.) led to improve the experimental setup by
   early dag-software development for *acquisition* and data *monitoring*.
  - Design and development of an ancillary system i.e., based on a 'scintillator & camera' setup allowing for a shot-to-shot acquisition/monitor of facility's beam characteristics (spatial profile and charge).

Sapphire pads (May 22, INFN-LNF)



Sapphire 4-strip (Sep. 22, CERN)



Sapphire 192-strip (Mar. 23, CERN)



## Test beams: Pad sensor test at Frascati INFN national laboratories

#### Goals

- Investigate sapphire CCE as a function of the external biasing voltage
- and **beam bunch charge**.

#### Setup

- 2-inch sapphire wafer with two metal-plated pads  $(r_{SP} = 0.8 \text{mm}, \text{r}_{LP} = 2.75 \text{mm})$  on top surface. Two samples (thickness 110µm, 150µm) stacked one after the other in the DUT assembly.
- Strip LP/SP routed to independent 200mV/fC charge sensitive amplifiers and signal readout with a digital oscilloscope.
- In-air test with a 300MeV bunched e-beam (1-10<sup>5</sup> e/bunch, 10ns) monitored with a 400µm-thick silicon GP (upstream) and lead-glass calorimeter





(a) upstream (110)





## Test beams: Pad sensor test at Frascati INFN national laboratories

#### Challenges

- Large systematic uncertainties from beam-DUT misalignments and air scatterings – evaluated by a Geant4 sim.
- Beam profile and charge not acquired average values over 1k bunches used.



Figure 11: GEANT4 visualization of the test beam geometry for a few electrons. From left to right, along the beam line direction: 50um Ti beam pipe exit window, air, profilometer, air, DUT. Color code is the following: red/green/blue lines for electrons/photons/positrons.

| 10k triagona       | SmallPad                | SmallPad          | LargePad                | LargePad         |
|--------------------|-------------------------|-------------------|-------------------------|------------------|
| Tok iniggers       | $150 \; [\mathrm{MeV}]$ | $110 \; [MeV]$    | $150 \; [\mathrm{MeV}]$ | $110 \; [MeV]$   |
| aligned            | $6.200 \pm 0.009$       | $4.636 \pm 0.007$ | $50.76 \pm 0.02$        | $37.67 \pm 0.02$ |
| misalignment       | $4.965 \pm 0.008$       | $3.602 \pm 0.006$ | $44.01 \pm 0.02$        | $32.50 \pm 0.02$ |
| $(1,1)\mathrm{um}$ | $4.300 \pm 0.000$       | $5.092 \pm 0.000$ | $44.01 \pm 0.02$        | $52.59 \pm 0.02$ |
| ratio              | 0.801                   | 0.796             | 0.8670                  | 0.8651           |

Table 2: Energy deposited in the pads of sapphire sensors when beam center is perfectly aligned, and when a (1, 1) mm misalignment is present. Typical beam profile parameters have been used:  $(\sigma_x, \sigma_y) = (2.13, 1.87)$  mm and multiplicity N = 1000. Simulation statistics is 10k triggers. 0.14

01

## Test beams: Pad sensor test at Frascati INFN national laboratories

#### Challenges

- Large systematic uncertainties from beam-DUT misalignments and air scatterings – evaluated by a Geant4 sim.
- Beam profile and charge not acquired average values over 1k bunches used.

#### Results

- Typical efficiency of 14% (12%) for the 110µm (150µm) operating at 1kV.
- Typical charge carriers drift distance small w.r.t. the sensor thickness.
- Linear dependence of CCE with beam bunch charge up to 9k e/bunch.



Figure 9.9: Behaviour of the collected charge from the large pad as a function of the beam multiplicity, at a fixed bias voltage of  $V_{hias} = 100V$ .

DESY.

## Test beams. Four-strip sensor. Scope and setup

- Tomsk 4-strip (80µm x 1cm) sensors have been tested at CLEAR (CERN) with an e<sup>-</sup>-beam.
- CLEAR facility able to deliver charges 10pC 270nC with a bunched electron beam (1-180 bunch/train) with gaussian 1x2 mm<sup>2</sup> profile, at a maximum train repetition rate of 10Hz.
- High beam charge allows measurement of strip signals without any amplification, directly at the strip with an oscilloscope.

### Investigated

- 1. Charge collection efficiency vs. HV-bias
- 2. Strip-response vs. beam position on the strip
- 3. Relative charge collected after high irradiation (15MGy)

| Nb. channels   | 4         | 4          | 3 (1 not working) |
|----------------|-----------|------------|-------------------|
| Thickness      | 110um     | 150um      | 150um             |
| Manufacturer   | Wuppertal | University | M-type            |
| Beam intercept | first     | second     | third             |



\* + > + Q 🗄 🖺

## Test beams. Four-strip sensor. Challenges and results

#### **Challenges**

- Facility's issues at the TB beginning (klystron failures).
  - Beam instability (position, width)
  - ► Beam bunch time profile instability after klystron trips
- Continuous beam profile acquisition (from YAG:Ce) unavailable.
- Wrong configuration of digitizers in some runs.
- Wrong timing of beam charge / digitizer data streams, required<sup>0.00</sup> re-synchronization afterwards.

#### Results

- Measurement of the signal produced in sapphire.
- Sensor uniformity response verified.
- Relative CCE with irradiation behaviour.

#### Lessons learned

Small strip area requires precise beam profile and charge information shot-by-shot → (scintillator + camera) system



v=0.23681

x=68.101

#### 26

## Test beams. GBP sensors. Scope and setup

- Tomsk 192-strip (100µm pitch, 110µm-thick) sensors received Summer '22.
- Wire bonding made in Pisa, Italy.
- Tested at CLEAR (CERN) with an e-beam. March '23.

#### Goals

- First test of the electronics (PS, FERS).
- CCE(V), CCE(Q) and strip-response with beam pos.
- Relative CCE w.r.t. the dose delivered (up to 10MGy).
- BP reconstruction w.r.t. the scintillator screen.
- Signal/noise w.r.t. different grounding conf.s

#### Setup

- 2x192-strip 110µm-thick sensors (University, Monocrystal).
- Ribbon shielded cables 3m used.
- Patch panel with 64ch/32ch sensor readout by 2xFERS A5202 cards.
- Beam profile monitored with a scintillator and a camera, and beam charge acquired event by event.



## Test beams. GBP sensors. Challenges

#### Challenges

Readout stream from many detectors (sapphire, camera, digitizer, psu, stages) with single PC

Time synchronization of the streams

#### Status

Data pre-processing (alignment, synchronization) completed.

Data-frame ready for analysis.

Semi-permanent installation of the GBP at Vesper @ CLEAR (CERN).

