

# CMS Computing resource planning: some food for thoughts in SuperB

Daniele Bonacorsi

[ deputy CMS Computing coordinator - University of Bologna, Italy ]



# CMS Tiers and tasks





# Resource planning

#### A realistic planning for computing resources (2-3 years ahead):

- precise to the best knowledge and/or possible extrapolation
- ◆ granular at a reasonable level
- easy to be kept up to date with realtime feedback from computing operations

#### It should take into account:

- ◆ The machine plans
  - major impact on the overall resource planning and management
- ◆ The volume and type of data
  - not only from LHC but also the derived data (reprocessing, skimming, ...) and their relative importance
- The number and peculiarities of Tiers
  - 1 Tier-0 center, 7 Tier-1 sites, >40 Tier-2 sites, a growing number of Tier-3 sites
  - technical differences, that lead to different strengths and weaknesses
- ◆ The interaction with and input from other CMS projects
  - Mainly: Offline, Trigger, Physics, ...
- Any migrations to new tools and solutions (internal to CMS-Computing)
  - Avoid destructive interference: e.g. adoption of new solutions, once planned, must be folded in

#### Set this up is just the start: it needs to be maintained and regularly updated

◆ Any form/tool you prefer. CMS opted for just a unique resources spreadsheet.



# **Input parameters** [1/2]

#### Live secs: 5.2 M secs

→ ~200 days of running at ~30% live time, spread over months

#### Expected average trigger rate in CMS: ~300, 400 Hz in 2011-2012

- the system has demonstrated ability to record substantially higher trigger rates
- rate limited primarily by computing processing and analysis resources

#### Initial <u>overlap</u> factor between primary datasets: ~1.25

simulation using early versions of trigger menu for various luminosity scenarios

#### Tier-0 keep-up factor: ~0.75

- ★ fraction of the incoming trigger rate the TO can process in real-time
  - if <1, T0 is still processing data in the time between fills
- → important in T0 resource needs calculations
  - e.g. HI in 2010 showed capability of refilling for collisions in 3-4 hrs
  - if too low, it has the potential for not allowing the T0 to keep up with incoming data

#### More "facility" parameters ...

- ◆ number of Tier-{1,2} sites, Tier-{0,1,2} (+CAF) installed vs. pledges
  - for processing capacity, {archival,disk} storage
- efficiency for organized and analysis processing
- fraction of MC events compared to data
- ◆ {Data,MC} {RAW,RECO,AOD} fraction on disk T1
- → T2 Space per User, # users /T2, Production space needed per T2, Passes through data at T2 /month, Disk Fill factor
- More...



# **Input parameters** [2/2]

CAVEAT: Focus on pp here. Same work is done for HI also

#### Additionally, relevant "CMS" parameters computed by expected pp PU scenarios

◆ events reco size and time are more correlated to PU conditions than to year

#### Sizes

- ◆ RAW evt size (data) was estimated by 2010 experience
- Simulation remains the same
- RECO and AOD sizes grow with the increase in the nb of interactions per crossing
- ◆ RECO size scrubbed by Offline, but still high w.r.t Computing Model
  - actions: migration to AOD, plus aggressive clean-up campaigns of older reconstruction versions

#### **Times**

- Reconstruction time scales roughly linearly with the nb of PU evts
  - number of tracks in the event as
     a significant driver of the reco speed

| Parameter (pp)          |          | Expected PU scenarios |      |      |      |
|-------------------------|----------|-----------------------|------|------|------|
| Parameter (p)           | <i>J</i> | 0                     | 4    | 8    | 16   |
| RAW evt size (data)     | [MB]     | 0.24                  | 0.32 | 0.39 | 0.72 |
| RAW evt size (MC)       | [MB]     | 1.5                   | 1.5  | 1.5  | 1.5  |
| RECO evt size (data)    | [MB]     | 0.26                  | 0.39 | 0.53 | 0.81 |
| RECO evt size (MC)      | [MB]     | 0.36                  | 0.49 | 0.63 | 0.91 |
| AOD evt size (data)     | [MB]     | 0.13                  | 0.17 | 0.21 | 0.30 |
| AOD evt size (MC)       | [MB]     | 0.18                  | 0.22 | 0.26 | 0.35 |
| Repacker time           | [HS06s]  | 3                     | 6    | 7    | 8    |
| RECO time (data)        | [HS06s]  | 16                    | 28   | 43   | 92   |
| Gen-Sim time (MC)       | [HS06s]  | 500                   | 500  | 500  | 500  |
| Redigi-Rereco time (MC) | [HS06s]  | 37                    | 65   | 93   | 164  |



## From these, you should be able to compute:

CAVEAT: the actual lists are more detailed and include more items

- total {pp,HI} evts /month and /yr
- {data,express} breakdown
- total MC evts /month and /yr
- T0: {pp,HI}{RECO,express,repacker,validation}
   CPU required
- ◆ T0: {pp,HI} VOboxes budget
- ◆ T0: CPU usability reduction factors
- ★ T0: Analysis/Simulation resources
- ◆ T0: % of CPU pledge used
- ◆ T0: {RAW,RECO,AlcaReco} data volume on tape in {pp,HI}
- → T0: predictions for tape available/used
- ◆ T0: Castor pools capacity (all buffers)
- CAF: {express, prompt-reco,MC,RelVal} data volume
- CAF: predictions for CPU available/used
- CAF: predictions for CAF {disk,tape}
- ◆ CAF T2 (in all details)

- ◆ T1: CPU needed for data reco for {current,previous} yr
- ◆ T1: CPU needed for MC redigi/rereco for {current,previous} yr
- ◆ T1: CPU needed for skims
- ◆ T1: CPU needed for new MC production rounds
- ◆ T1: % of CPU pledge used
- ★ T1: {data,MC} RAW data volume and duplication factor
- ◆ T1: prompt-reco data volume
- ★ T1: {data,MC} rereco data volume for {current,previous} yr
- ◆ T1: RECO data volume /month and delete factor
- ◆ T1: skims data volume /month and delete factor
- → T1: {data,MC} {RAW,RECO, AOD} volume on tapes
- ◆ T1: {data,MC} AOD delete factors and turn factor
- ★ T1: skims data volume on {disk,tapes}
- T1: predictions for tape available/used
- ◆ T1: {data,MC} {RAW,RECO, AOD} volume on disk
- T1: predictions for disk available/used
- ◆ T2: {data,MC} {RECO,AOD} on disk
- → T2: {Production,User} Space on T2
- → T2: total T2 disk available/used
- → T2: {analysis,MC} processing needed
- ◆ T2: predictions for % of {T1,T2} needed for {analysis,MC}

### This (and more) is what your computing infrastructure/sites need to know.



# Tier-0 requests (example from last CRSG)

Monthly breakdowns available

| CMS Tier-0, 300 Hz | Year |      |      |
|--------------------|------|------|------|
| CPU [kHS06]        | 2011 | 2012 | 2013 |
| Express            | 5    | 8    | 0    |
| Prompt-RECO        | 44   | 53   | 0    |
| Repack             | 3    | 3    | 0    |
| AlCa workflow      | 1    | 1    | 0    |
| RelVal/Validation  | 6    | 6    | 0    |
| VOBoxes            | 9    | 11   | 0    |
| Analysis           | 0    | 0    | 60   |
| MC production      | 0    | 0    | 20   |
| Total              | 68   | 82   | 80   |

#### **CPU**: requests do not grow in 2013

- ◆ CERN CPUs available in 2013 for ana/sim
- large integrated data sample, need to alleviate resource shortage at T2s

<u>NOTE</u>: CAF resources are in separate tables, not folded in here.

| CMS Tier-0, 300 Hz | Year |      |      |
|--------------------|------|------|------|
| Disk [TB]          | 2011 | 2012 | 2013 |
| Streamer pool      | 500  | 500  | 0    |
| Input Buffer       | 50   | 50   | 0    |
| Export Buffer      | 248  | 248  | 0    |
| Production space   | 200  | 200  | 0    |
| Total              | 998  | 998  |      |

#### Disk: breakdown into different buffers

mostly, workflow-based

| CMS Tier-0, 300 Hz | Year  |       |      |
|--------------------|-------|-------|------|
| Tape [TB]          | 2011  | 2012  | 2013 |
| RAW (pp)           | 4317  | 5793  | 0    |
| RECO (pp)          | 8633  | 10330 | 0    |
| AlCaRECO (pp)      | 415   | 595   | 0    |
| Total              | 13365 | 16718 |      |

Tape: scales with nb of evts collected /yr



# Tier-1 requests (example from last CRSG)

Monthly breakdowns available

| CMS Tier-1, 300 Hz |      | Year |      |
|--------------------|------|------|------|
| CPU [kHS06]        | 2011 | 2012 | 2013 |
| Processing         | 130  | 160  | 160  |

**CPU**: requests driven by reco times, total volume of data, time allocated to complete a processing pass

| CMS Tier-1, 300 Hz | Year  |       |       |
|--------------------|-------|-------|-------|
| Tape [TB]          | 2011  | 2012  | 2013  |
| RAW (data)         | 2452  | 4039  | 4039  |
| RECO (data)        | 7037  | 8991  | 9243  |
| AOD (data)         | 2224  | 3740  | 5001  |
| RAW (MC)           | 10616 | 15544 | 17758 |
| RECO (MC)          | 7433  | 14489 | 18107 |
| AOD (MC)           | 3866  | 6837  | 8309  |
| Skims              | 1811  | 2397  | 2473  |
| Total              | 35438 | 56036 | 64930 |

| CMS Tier-1, 300 Hz | Year  |       |       |
|--------------------|-------|-------|-------|
| Disk [TB]          | 2011  | 2012  | 2013  |
| RAW (data)         | 2200  | 2100  | 2100  |
| RECO (data)        | 2551  | 2926  | 2926  |
| AOD (data)         | 4089  | 7595  | 7108  |
| RAW (MC)           | 1081  | 1585  | 2089  |
| RECO (MC)          | 887   | 1297  | 2130  |
| AOD (MC)           | 1992  | 3139  | 4888  |
| Skims              | 1700  | 2300  | 2500  |
| T1 temp disk       | 1600  | 2200  | 2700  |
| Total              | 16100 | 23141 | 26441 |

**Disk**: 1 copy of current RECO + current year's RAW + 10% of preceding RECO + 10% of all simulations

- ♦ No more need for full AOD replica sets at all T1s
  - reduced AOD size + full-mesh transfer model

**Tape**: stage-in back from tape whatever is not on disk



# T1 resources evolution



(kHS06)



# Tier-2 requests (example from last CRSG)

Monthly breakdowns available

| CMS Tier-2, 300 Hz | Year |      |      |
|--------------------|------|------|------|
| CPU [kHS06]        | 2011 | 2012 | 2013 |
| Analysis           | 195  | 280  | 280  |
| Production         | 120  | 120  | 120  |
| Total              | 315  | 400  | 400  |

| CMS Tier-2, 300 Hz  Disk [TB] | Year  |       |       |
|-------------------------------|-------|-------|-------|
|                               | 2011  | 2012  | 2013  |
| RECO (data)                   | 2415  | 1000  | 1000  |
| AOD (data)                    | 1683  | 8500  | 7747  |
| RECO (MC)                     | 9270  | 3060  | 5000  |
| AOD (MC)                      | 3431  | 9862  | 10001 |
| User Space on T2s             | 2400  | 3600  | 3600  |
| Production Space on T2s       | 1000  | 1000  | 1000  |
| Total                         | 20198 | 27022 | 28348 |

# The total amount of resources for analysis scale strongly with the transition from RECO to AOD

- → Smooth so far (see next slide)
- Assumption in the planning:
  - within 6-8 months from the start of 2011, 50% of the analysis activity would have been performed using AOD
  - This will increase eventually to 90% at the end of 2011

**CPU**: we moved part of production to T1s to free slots for distributed analysis at T2s

Disk: we assume to also use CERN/CAF resources for analysis in 2013



# T2 resources evolution



The proportion of RECO increases at the beginning when most of the analysis is on this data format, and decreases as CMS transitions to AOD.

# So far, smooth transition to AODs

 it needs to be closely monitored, though.





# 400 Hz

# In 2012, we could have 5E33 cm<sup>-2</sup> s<sup>-1</sup> and 16 pp/crossing

- ◆ Bandwidth increase of ~100 Hz would significantly improve discovery potentials
  - e.g. Higgs to WW: Physics claims a 10% increase in dilepton efficiency by bandwidth increase of 75 Hz

The resource request increase varies between 10% and 30% higher than needed to support 300Hz Supporting 400 Hz during 2011 would require some

the time for reprocessing would need to increase

additional operation model changes

- freezing SW and calibrations earlier in the year to be ready for Confs
- allow high priority analyses (that benefit from the higher trigger rate) to have access to the limited processing resources

#### What matters in this context:

- the computing required to support 400Hz, as well as any scenario different from the 'reference' one, is relatively easy to extract
  - just vary some parameters in the resource planning spreadsheet

| CMS Tiers,    | % increase over<br>300 Hz |      |  |
|---------------|---------------------------|------|--|
| 400 Hz        | 2012                      | 2013 |  |
| TO CPU        | 22%                       | 22%  |  |
| T0 disk       | 0%                        | 0%   |  |
| T0 tape (+HI) | 10%                       | 10%  |  |
| CAF CPU       | 18%                       | 18%  |  |
| CAF disk      | 11%                       | 11%  |  |
| T1 CPU        | 25%                       | 25%  |  |
| T1 disk       | 23%                       | 30%  |  |
| T1 tape       | 7%                        | 11%  |  |
| T2 CPU        | 12%                       | 12%  |  |
| T2 disk       | 30%                       | 20%  |  |



# **Outlook**

# We "used" CMS as an example in a data-taking context. Any experiment needs a realistic planning on computing resources

as soon as possible. Needed for the infrastructure/sites to get prepared.

#### CMS uses a flexible tool with monthly breakdown on most categories

- it maintains the fundamentals of the CMS Computing Model (and its evolutions) and combines with our best understanding from the operational experience we have with collision data
- ◆ some work to set it up, some work to update and maintain it
- ◆ also open to the C-RSG: they used it and were able to recompute all CMS figures

#### Useful only if tuned real-time with Computing operations

- 1. start with clear assumptions and produce reasonable predictions
- 2. updated plans and/or actual resource utilization folded in month by month
  - e.g. hard data on utilization available and discussed in weekly Operations internal meetings
- 3. assumptions smoothly fade out, predictive power grows

#### New experiments may need something similar

◆ whatever works may be just fine. But don't fail to prepare, or be prepared to fail.