
1

ALICE experience using CoverityALICE experience using Coverity

presented by Olga Datskova (CERN, ALICE Offline)
Ferrara, 04/07/2011

Federico Carminati, Peter Hristov, Axel Naumann and Olga Datskova (CERN)

2

AliRoot frameworkAliRoot framework

ROOT is the foundation framework
upon which AliRoot is built.

AliEn provides GRID support to users
and sites.

GEANT3 and GEANT4 are used for
simulation and Monte-Carlo
productions.

Main tasks for static C/C++ code analysis in AliRoot:

Maintaining good quality of code with a large developer base.

Ensuring rapid fixes in order to keep up with weekly release cycles.

Debugging irreproducible problems.

AliEn

ALICE
GRID
ALICE
GRID

AliRoot

ROOT
GEANT3

GEANT4

AliRoot is the ALICE Off-line framework used for simulation,
reconstruction, analysis and visualisation of experiment data. [1]

AliRoot is developed with the
following dependencies in mind [2]:

3

Coverity analysisCoverity analysis

Coverity analysis suite consists of the following set of tools [3]:

Coverity Static Analysis is a command line program for identifying program
defects through static source code inspection. The tool supports C/C++,
Java and C# programming languages.

Coverity Dynamic Analysis performs dynamic evaluation of running code.
The tool supports Java programming language.

Coverity Integrity Manager is a web interface for managing defects, which
were discovered by Coverity Static Analysis and Coverity Dynamic Analysis
tools.

 “Coverity analysis solutions enable users to test their code against business
policies and thresholds while in development. Finding and addressing defects
early in the lifecycle saves developer’s time by minimizing rework and
keeping releases on schedule.” [3]

4

Coverity featuresCoverity features

Coverity Static Analysis and Integrity Manager have the following features:

The installation procedure for both distributions is very straight forward
and is done through the provided installation scripts.

Coverity Static Analysis tool provides the flexibility of a command
line, allowing for greater control over the build and analysis
processes.

Coverity Integrity Manager has the following aspects:

 Database for managing defects and users assigned to them.
The database has the functionality to be queried securely for
remote database administration.

Web server allows for a centralised web service, where users
can log in and examine their code. The system supports
LDAP authentication.

5

AliRoot static analysis setupAliRoot static analysis setup

$ cd $ALICE_ROOT
$ svn update
$ cd $COVERITY_IN
$ cov-build --dir $COVERITY_OUT make

$ cd $ALICE_ROOT
$ svn update
$ cd $COVERITY_IN
$ cov-build --dir $COVERITY_OUT make

$ cov-analyze --dir $COVERITY_OUT [list of checkers] [options]

$ cov-commit-defects -dir $COVERITY_OUT [options]

1) AliRoot sources are updated with the
latest development code and fixes.

2) The sources are then built through cov-
build tool, producing intermediate
code in $COVERITY_OUT

3) Analysis of the built sources can then
commence. Here we specify the
desired checks that the tool must
perform.

4) After successful completion of analysis,
the resulting reports are committed
to the Coverity Integrity Manager.

5) The developer then checks through the
web page for defects assigned to
him/her and starts to work on the
fixes as necessary.

users
commit
 fixes

AliRoot has been set up to undergo
consistent daily static analysis. The
following steps describe the process:

alicoverity log in screen (26/06/2011)

6

Coverity maintenance and use policyCoverity maintenance and use policy

To ensure persistent quality of code, the following policies were introduced:

All defects must be fixed promptly irrespective of their impact.

“Top 10” users receive email notifications every day. The message also
contains compilation warnings which should be taken care of quickly.

Recent addition (comes into effect on the 11th of July): users have 7 days
to fix all their defects, otherwise they are banned from subversion until
they do.

To ensure persistent quality of code, the following policies were introduced:

All defects must be fixed promptly irrespective of their impact.

“Top 10” users receive email notifications every day. The message also
contains compilation warnings which should be taken care of quickly.

Recent addition (comes into effect on the 11th of July): users have 7 days
to fix all their defects, otherwise they are banned from subversion until
they do.

To achieve minimal maintenance and consistent performance from the Coverity
server, the following steps were automated in cron:

Coverity build, analyse and submit procedures.

Retrieving and modifying defect information from the database, whether to send a
notification or assign defect to the user.

Performing daily backups of the Coverity database.

7

Coverity results for AliRootCoverity results for AliRoot
 Coverity was put into active use starting

from January 2011.

 Approximately 6000 defects have been
identified initially by Coverity.

 At present time, we have 12 defects with

more fixes being committed and new code
developed every day.

alicoverity Dashboard and metric report (26/06/2011)

8

Coverity defectsCoverity defects
Coverity provides its own classification of discovered defects into appropriate

impact categories as seen in the project side menu:

alicoverity Coverity Integrity Manager menu (26/06/2011)

9

High impact defect: Out of bounds write [4] High impact defect: Out of bounds write [4]

Solution from the developer:
increment array size

Defect #16203: when i = 20, an attempt to write to 21st value of fHPionInvMasses will be
made, which has been defined to have only 20 elements.

10

Another example: Out of bounds write [4] Another example: Out of bounds write [4]
Defect #16971: mismatch in the number of labels within the 'for' loop index and GetLabel()
result.

AliITSUPixelModule.h

Header:

11

High impact defect: Use after free [5] High impact defect: Use after free [5]

Solution from the developer: get the
Mean before deleting the arrays

Defect #16195: arrayValues and arrayWeights are released in memory, then subsequently
used in TMath::Mean() function.

12

High impact defect: Resource leak [6] High impact defect: Resource leak [6]

Solution: always use delete
with the new operator

Defect #14153: memory leak occurs when one allocates memory with a new operator and
does not release the resources at the end of variable scope.

...

13

Medium and Low impact defectsMedium and Low impact defects
Defect #16952: nothing out of the ordinary?

Defect #15833: unsafe copy. [7]

14

False positivesFalse positives
Defect #14425: only using a string in sscanf and fscanf may be dangerous.

Defect #11174: kSPECIES being a constant value can not be less than or equal to 0
and w is initialised before use.

15

False positives and modelingFalse positives and modeling

In order to avoid recurring reports of false positive cases, Coverity
static analysis allows for custom function implementations:

Function producing a false positive case is implemented in a separate .cxx
file and adjusted as necessary.

The source file is then built into a model using cov-make-library.

Finally, when starting the analysis the –user-model-file is specified along
with the library file to use.

Defect #16969: defect description suggests that the dynamic_cast may fail and
return a NULL. However as seen below the inputHandler will immediately go into
AliFatal and exit the program.

16

Coverity use overview for AliRootCoverity use overview for AliRoot

The quality of AliRoot code has improved.

Developers have become more aware of their coding habits.
With a centralised system providing complete visibility of all
the defects along with some encouragement to fix the
problems, developers have become more diligent in their
development practice. Defects are now fixed promptly.

Complementing dynamic analysis, Coverity has greatly
helped in debugging hard to diagnose problems.

Coverity as a static analysis tool used in conjunction with
dynamic analysis is an invaluable solution in any
development process.

17

Additional static analysis toolsAdditional static analysis tools
Rule Checker [8]: performs static code check according to predefined

rules, ensuring compliance with both C/C++ coding standards and
experiment specific coding conventions. The analysis process is as
follows:

In the source directory: $ svn update && make check-all

After analysis has completed, the following reports are produced
and sent to the developer to be fixed:

The Rule Checker has been developed by the Bruno Kessler Foundation [9].

cppcheck [10] – open source static code analysis tool.

NamingRule: "RN13" : Local variables names start with a lower case letter.
 the variable: AcoHit
 [file: AliACORDEQADataMaker.cxx line:198] does not start with a lower case letter

CodingRule: "RC11": Make const all member functions that are not supposed to change member
data.
 the method: ASideHasHit
 in file [file:AliFMDOfflineTrigger.cxx line: 60] can be declared const

18

BibliographyBibliography
1. ‘Welcome to the home page of the ALICE Off-line Project’ <URL http://aliceinfo.cern.ch/Offline>

[accessed 26 June 2011] .

2. ‘AliRoot documentation’ <URL http://aliceinfo.cern.ch/Offline/AliRoot/Manual.html>
[accessed 26 June 2011] .

3. ‘Test: Code in Development’ <URL http://www.coverity.com/products/>
[accessed 26 June 2011] .

4. ‘CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer’
<URL http://cwe.mitre.org/data/definitions/119.html> [accessed 26 June 2011] .

5. ‘CWE-416: Use After Free’ <URL http://cwe.mitre.org/data/definitions/416.html>
[accessed 26 of June 2011] .

 6. ‘CWE-404: Improper Resource Shutdown or Release’
 <URL http://cwe.mitre.org/data/definitions/404.html> [accessed 26 June 2011] .

 7. ‘CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')’
 <URL http://cwe.mitre.org/data/definitions/120.html> [accessed 26 of June 2011] .

 8. ‘Coding Conventions’
 <URL http://aliceinfo.cern.ch/Offline/AliRoot/Coding-Conventions.html> [accessed 26 June 2011] .

 9. ‘Fondazione Bruno Kessler’ <URL http://www.fbk.eu/> [accessed 26 June 2011] .

 10. ‘cppcheck: a tool for static C/C+ code analysis’
 <URL http://cppcheck.sourceforge.net/> [accessed 26 June 2011] .

http://aliceinfo.cern.ch/Offline
http://aliceinfo.cern.ch/Offline/AliRoot/Manual.html
http://www.coverity.com/products/
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/416.html
http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/120.html
http://aliceinfo.cern.ch/Offline/AliRoot/Coding-Conventions.html
http://www.fbk.eu/
http://cppcheck.sourceforge.net/

	Title page
	AliRoot framework
	Coverity analysis
	Coverity features
	AliRoot static analysis setup
	Coverity automation and use policy
	Coverity results for AliRoot
	Coverity defect classification
	High impact defect: Out of bounds write
	Another example: Out of bounds write
	High impact defect: Use after free
	High Impact defect: Resource leak
	Medium and Low impact defects
	False positives
	Modeling in Coverity
	Coverity overview
	Additional static analysis tools
	Bibliography

