ALICE experience using Coverity

Federico Carminati, Peter Hristov, Axel Naumann and Olga Datskova (CERN)

presented by Olga Dafskova (CERN, ALICE Offline)
Ferrara, 04/07/2011

AliRoot framework

AliRoot is the ALICE Off-line framework used for simulation,
reconstruction, analysis and visualisation of experiment data.

AliRoot is developed with the
following dependencies in mind

1 AliRoot ¢ ROOTIis the_ foun(_jation_ framework
upon which AliRoot is built.

GEANT4 = i ¢ AliEn provides GRID support to users
and sites.

ROOT —» AliEn

GEANT3 = ¢ GEANT3 and GEANTA4 are used for
simulation and Monte-Carlo

productions.

Main tasks for static C/C++ code analysis in AliRoot:

¢ Maintaining good quality of code with a large developer base.
¢ Ensuring rapid fixes in order to keep up with weekly release cycles.

¢ Debugging irreproducible problems.

Coverity analysis

“Coverity analysis solutions enable users to test their code against business
policies and thresholds while in development. Finding and addressing defects
early in the lifecycle saves developer’s time by minimizing rework and

keeping releases on schedule.”

Coverity analysis suite consists of the following set of tools

Coverity Static Analysis is a command line program for identifying program
defects through static source code inspection. The tool supports C/C++,
Java and C# programming languages.

Coverity Dynamic Analysis performs dynamic evaluation of running code.
The tool supports Java programming language.

Coverity Integrity Manager is a web interface for managing defects, which
were discovered by Coverity Static Analysis and Coverity Dynamic Analysis
tools.

Coverity feafures

Coverity Static Analysis and Integrity Manager have the following features:

¢ The installation procedure for both distributions is very straight forward
and is done through the provided installation scripts.

¢ Coverity Static Analysis tool provides the flexibility of a command
line, allowing for greater control over the build and analysis
processes.

¢ Coverity Integrity Manager has the following aspects:

¢ Database for managing defects and users assigned to them.
The database has the functionality to be queried securely for
remote database administration.

¢ Web server allows for a centralised web service, where users
can log in and examine their code. The system supports
LDAP authentication.

AliRooft static analysis sefup

AliRoot has been set up to undergo

$ cd $ALICE_ROOT consistent daily static analysis. The
$ svn update following steps describe the process:
> $cd SCOVERITY_IN
$ cov-build --dir SCOVERITY_OUT make 1) AliRoot sources are updated with the
L latest development code and fixes.

2) The sources are then built through cov-

: _ _ build tool, producing intermediate
$ cov-analyze --dir $COVERITY_OUT [list of checkers] [options] code in SCOVERITY OUT

L 3) Analysis of the built sources can then
commence. Here we specify the
$ cov-commit-defects -dir $COVERITY_OUT [options] desired checks that the tool must
perform.
L 4) After successful completion of analysis,
, the resulting reports are committed
S L LA A
users ' i
_ @) coverity -»V/Z% 4 !g!- to the Coverity Integrity Manager.
C(_)mmlt Sign in to Coverity® Integrity Manager
fixes 5) The developer then checks through the
m—) web page for defects assigned to
Password) him/her and starts to work on the
O Remember Me —_— fixes as necessary.

Coverity maintenance and use policy

To achieve minimal maintenance and consistent performance from the Coverity
server, the following steps were automated in cron:

¢ Coverity build, analyse and submit procedures.

¢ Retrieving and modifying defect information from the database, whether to send a
notification or assign defect to the user.

¢ Performing daily backups of the Coverity database.

To ensure persistent quality of code, the following policies were introduced:
¢ All defects must be fixed promptly irrespective of their impact.

¢ “Top 10" users receive email notifications every day. The message also
contains compilation warnings which should be taken care of quickly.

¢ Recent addition (comes into effect on the 11™ of July): users have 7 days
to fix all their defects, otherwise they are banned from subversion until
they do.

6

Coverity results for AliRoot

900 —
800
700
600 |
500
400
300
200 |
100 -

Defect Trend for AliRoot
¢ Coverity was put into active use starting

from January 2011.

e ¢ Approximately 6000 defects have been
/ identified initially by Coverity.

¢ At present time, we have 12 defects with
o more fixes being committed and new code
Bemmgoome = o developed every day.

03/18/11

04/13/11 03/08/11 06/02/11

B rixed Defects] Outstanding Defects

4,500 -
4,000 -
3,500

3,000 -

2,500 -

2,000 —

1,500

1,000

300

- Total Defects: 4,337

Outstanding Defects: 12

03/1

8/11

. Mew Defects

' ' ! MNew Defects: 0
04/13/11 03/08/11 06/02/11

i Outstanding Defacts [Resolved Defects B Total Defects

alicoverity Dashboard and metric report (26/06/2011)

Coverity defects

Coverity provides its own classification of discovered defects into appropriate
Impact categories as seen in the project side menu:

Filter results by:

¥ Defect Type:

U aAny

Ul High Impact: only

U Medium Impact: only
Low Impact: only

Filter results by:
¥ Defect Type:

O Any

High Impact: only
U Medium Impact: only
U Low Impact: only
¥| Memory - corruptions
¥| Memory - illegal accesses
¥| Resource leaks
¥| Uninitialized variables
APT usage errors
Class hierarchy inconsistencies
Control flow issues
Error handling issues
Incorrect expression
Insecure data handling
Integer handling issues
Null pointer dereferences
Program hangs
Build system issues
Code maintainability issues
Parse warnings

Performance inefficiencies

¥y ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ Y Y ¥Y ¥“Y ¥Y T ¥YOXFX

Security best practices viclations

Filter results by:
¥ Defect Type:

Ll any

Ll High Impact: only

Medium Impact: only

Ul Low Impact: only
Memory - corruptions
Memory - illegal accesses
Resource leaks
Uninitialized variables
API usage errors
Class hierarchy inconsistencies
Control flow issues
Error handling issues
Incorrect expression
Insecure data handling
Integer handling issues

Null pointer dereferences

I I I O I I Y I ™

Program hangs

Build system issues

Code maintainability issues
Parse warnings

Performance inefficiencies

¥y ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥vO¥ ¥YOF ¥FY ¥y %7

Security best practices violations

¥ ¥ ¥ ¥ ¥y ¥ ¥ ¥ ¥ ¥y ¥ ¥y ¥y ¥ YV

I Y Y Y

Memeory - corruptions
Memory - illegal accesses
Resource leaks
Uninitialized variables

API usage errors

Class hierarchy inconsistencies
Control flow issues

Error handling issues
Incorrect expression
Insecure data handling
Integer handling issues
Mull pointer dereferences
Program hangs

Build system issues

Code maintainability issues
Parse warnings
Performance inefficiencies

Security best practices violations

High impact defect: Out of bounds write

— = [—

Defect #16203: when i = 20, an attempt to write to 21° value of fHPionlnvMasses will be
made, which has been defined to have only 20 elements.

foutput-=Add (fHPionMggDgg);
const Int_t nbins = 20;

Double_t xbins[nbins] = {0.5,1,1.5,2,2.5,3,

fPtRanges = new TAxis (nbins-1,xbins);

At conditional (8): "i == 20" taking the true branch.
At conditional (8): "i == 20" taking the true branch.
At conditional (11): "i == 20" taking the true branch.

for (Int_t 1 = 0; i<=nbins; +1i} {
CID 16203: Out-of-bounds write (QVERRUM_STATIC)

COwverrunning static array "this-=fHPionlinviasses", with 20 elements, at position 20 with index variable "i".

[

3.5,4,4,5,5,6,7,8,9,10,12.5,15, 20, 25, 50} ;

A fHPionInvMasses[i] = new THIF(Form("hPionInvMass%sd",i),"",1000,0,2);
fHPionInvMasses (1] -=SetdTitle ("M {#gammaggammal} [GeV/c™{2}]");

At conditional (7): " == 0"taking the true branch.
At conditional (9): "i == 0"taking the false branch.

if (1==0)

fHPionInvMasses[i]-=SetTitle(Form{"0 = p {T} {#gammazganma} <% 1f",xbins[0]));

At conditional (10): "i == 20" taking the false branch.
else if (1==nbins)

fHPionInvMasses[i]-=SetTitle (Form ("p_{T}" {#gammazganma}l = 50"));

else

fHPionInvMasses[i]-=SetTitle(Form{"% 1T = p {T}"{#gammazgamma}l <% 11", xbins[i-1],xbins[i]}};

foutput-=Add (fHPionInvMasses([i]);
b

Solution from the developer:

increment array size

gl

Line 102
104 TH2F *fHPionMggPt;
105 TH2F *fHPionMggAsym;
106 TH2F *fHPionMggDgg;
07 TH1F *fHPionlnvMasses[20];

//*histo for pion mass vs. pT
/*histo for pion mass vs. asym
//*histo for pion mass vs. opening angle
/ithistos for invariant mass plots

*fHPionMggPt;
*fHPionMggAsym;
*fHPionMggDgg:
*fHPioninvMasses[21];

/*histo for pion mass vs. pT
//'histo for pion mass vs. asym
J/*histo for pion mass vs. opening angle
I'histos for invariant mass plots

9

Anofther example: Out of bounds write u

Defect #16971: mismatch in the number of labels within the 'for' loop index and GetLabel()
result.

void StartEvent();
Header. enum {kMaxLab=24}: // maximum number of MC labels associated to the cluster
Int t ProcessHit(Int t layer, UInt t col, UInt t row, UShort t charge,Int t label[kMaxLab]);

. for(Int_t i=0:i<kMaxlLab;i++){
¥ CID 16971: Out-of-bounds access (OVERRUN_STATIC)
Overrunning callee's array of size 12 by passing index "i" of value 23 in call to function "pix->GetLabel(i)". [hide details]
Y label[i] = pix->GetLabel(i);
JITS/UPGRADE/AIITSUPIxelModule.h
UInt_t GetCol() const {return fCol; }
UInt_t GetRow() const {return fRow; }
UInt_t GetCharge() const {return fCharge;}
Directly indexing parameter.
A Int_t Getlabel(Int_t i) const {return flLabels[i];}
void PrintInfo();

protected:

«

h
SetLabels(label);

}
b

AliIITSUPixelModule.h

enum {kMaxLab=12}; // maximum number of MC labels associated to the cluster
Int t GetlLabel(Int t i) const {return flLabels[i];}
void PrintInfo();

protected:

UInt t fCharge;
UShort t fModule;
UInt t fCol;

UInt t fRow;

Int t fLabels[kMaxLab];

10

High impact defect: Use affer free &

Defect #16195: arrayValues and arrayWeights are released in memory, then subsequently
used in TMath::Mean() function.

ér’rayﬂeights[i-ientrySDR] = (Double_t) (timestamp2 - (Int_t)v->GetTimeStamp()};
arrayValues[i-1entrySOR] = (Float_t)v->GetUInt():

i
select defect

! delete [] arrayValues;

CID 16185: Use after free (USE_AFTER_FREE)

"operator delete]](void *)" frees "arrayWeights".
A delete [] arrayWeights;

Passing freed pointer "arrayWeights" as an argument to function "double TMath: Mean=float=(long long, float const *, double const*)".
i aDCSArrayMean = TMath::Mean(1CountsRun,arrayValues,arrayWeights);

}

Solution from the developer: get the
Mean before deleting the arrays

\J

4 Line 2334 Line 2334
2334 arrayWeights[i-ientrySOR] = (Double_t){timestamp2 - (Int_t)v->GetTimeStampl()); arrayWeights[i-ientrySOR] = (Double_t){timestamp2 - (Int_t)v->GetTimeStamp());
2335 arrayValues(i-ientrySOR] = (Float_tiv->GetUInt(); arrayValues(i-ientrySOR] = (Float_t)v->GetUInt();
2336 } }
2337 aDCSArrayMean = TMath::Mean(iCountsRun,arrayValues,arrayWeights);
2338 delete [] arrayValues; delete [] arrayValues;
2339 delete [] arrayWeights; delete [] arrayWeights;
aDCSAmayMean = TMath::Mean(iCountsRun,arrayValues,arrayWeights);
2340 } }
M else if (iCountsRun == 1){ else if (iCountsRun == 1){
2342 AliDCSValue* v = (AliDCSValue *)array-=At{ientrySOR); AliDCSValue* v = (AliDCSValue *)array-=>At({ientrySOR);

11

High impact defect: Resource leak

Defect #14153. memory leak occurs when one allocates memory with a new operator and
does not release the resources at the end of variable scope.

select defect

! Double t * adx = neW Double t[ncalibs];
select defect

! Double t * ady = new Double tlncalibs];
select defect

! Double_t * adz = new Double t[ncalibs]:
select defect

! Double_t * adr = new Double_tlncalibs];

’ CID 14153: Resource leak (RESOURCE_LEAK)
Calling allocation function "operator newunsigned long)™.

Assigning: "adrphi" = storage returned from "new Double_tncalibs]”.
i Double_t * adrphi = new Double_t[ncalibs];

Printf ("x0==%f finished",x[0]);
1

Variable "adrphi” going out of scope leaks the storage it points to.

A 1

Solution: always use delete
with the new operator

Line 1319 Line 1319

1319 } }

1320 Printf("x0="%f finished",x[01): Printf("x0="2%/f finished",x[01):

1321 1 }

1322 delete [1 adx;// = new Double t[ncalibsl:
1323 delete [1 ady;// = new Double t[ncalibsl:
1324 delete [] adz;// = new Double_tlncalibs];
1325 delete [] adr;)/ = new Double_t[ncalibs];
1326 delete [] adrphi;/f = new Double_t[ncalibs]; 12
1327

[—y
%]
[
o
e
e

Medium and Low impact defecfts

k

Defect #16952: nothing out of the ordinary?

for (Int_t 1 = 8; i < dim + 1; i++) {
Int_t centries = 8,
if (i < dim) centries = fTree->Draw(((TObjString*)formulaTokens->At(i))->GetName(), cutStr.Data(), "goff", stop-start,start);

else centries = fTree->Draw(drawStr.Data(), cutStr.Data(), "goff", stop-start,start);

if (entries != centries) {
CID 16952 : Infinite loop (INFINITE_LOOP)
Top of the loop.
Bottom of the loop.
"j < dim + 1" must remain true for the loop to continue.
for (Int_t j = 8; j < dim + 1; i++) {
if(values[j]) delete values[j];

!
delete[] values;

Defect #15833: unsafe copy. [7]

if(data.Sec<3c)
ddlNumber=data.Sec*2+data.SubSec;
else
ddlNumber=72+({data.5%ec-36) *4+data. SubSec;
select defect
CID 15833: Copy into fixed size buffer (STRING_OVERFLOW)
You might overrun the 100 byte fixed-size string "filename" by copying the return value of "AliDAQ::DdIFileName(char const *, int)" without checking the length.
strcpy(filename Al1iDAQ: (Dd1FileName("TPC" , dd1Number));
Int_t patchIndex = data.5ubSec;
1f(data.Sec>=36) patchIndex += I 13

False positives

Defect #14425: only using a string in sscanf and fscanf may be dangerous.

it ({ sopt.Contains("MEAN") }

{
Int_t j(0);
CID 14425: Calling risky function (SECURE_CODING)
[VERY RISKY]. Using "sscanf" can cause a buffer overflow when done incorrectly. sscanf() assumes an arbitrarily large string, so callers must use correct precision specifiers or never use sscanf{). Use correct precision specifiers or do your own parsing

A sscanf(sopt.Data(), "MEAN®d" &j)

Defect #11174: kKSPECIES being a constant value can not be less than or equal to 0
and w is initialised before use.

= {0.0,0.0,0.0,0.0,0.0):

Double_t probability[5]
Double_t wW[5] = {0.8,0.0,0.8,0.8, 0.0}

1f(fPIDtype.Contains("Bayesian")) {
W CID 11174: Improper use of negative value (NEGATIVE_RETURNS)
Function "TMath::LocMax<double>(5LL, w)" returns a negative number. [hide details]
"long long TMath::LocMax<double>(long long, double const *}".

THath: :LocMax(AliPID: :KSPECIES W) ;

Assigning: signed variable "partType"
partType =

14

1
fcoverity /root /trunk/include/TMath.h
Longed_t TMath::LocMax(Longéd4_t n, const T *a) {
4/ Return index of array with the maximum element
/ IT more than one element is maximum retwrns first found.
'/ Implement here since it 75 faster (see comment in LocMin function)
At conditional (1): <= 0OLL" taking the true branch
Explicitly returning negative value "-1LL".
A if (n <=8 || !a) return -1;
T xmax = a[@];
Longed_t loc = B;
class ALiPID : public TObject {
public:
anum {
kSPECIES = 5, F£Ff Mumber of particle species recognized by the PID
£ Number of charged+neutral particle species recognized by the PHOS/EMCAL PID
deuteron, triton, helium-3 and alpha

kSPECIESN = 18,
KSPECIESLM = 4

¥

S Mumber of light nuclei:

False posifives and modeling

Defect #16969: defect description suggests that the dynamic_cast may fail and
return a NULL. However as seen below the inputHandler will immediately go into
AliFatal and exit the program.

CID 16969: Unchecked dynamic_cast (FORWARD_NULL)
Dynamic cast to pointer "dynamic_cast <struct AliinputEventHandler *={man->GetInputEventHandler())" can return null.

Assigning null: "inputHandler" = "dynamic_cast <struct AlilnputEventHandler *>(man->GetInputEventHandler())".
A AlilnputEventHandler *inputHandler=dynamic_cast<AlilnputEventHandler*>{man->GetInputEventHandler()}):
if (!inputHandler) AliFatal("Input handler needed"};

In order to avoid recurring reports of false positive cases, Coverity
static analysis allows for custom function implementations:

¢ Function producing a false positive case is implemented in a separate .cxx
file and adjusted as necessary.

¢ The source file is then built into a model using cov-make-library.
¢ Finally, when starting the analysis the —user-model-file is specified along

with the library file to use.
15

Coverity use overview for AliRoot

The quality of AliRoot code has improved.

Developers have become more aware of their coding habits.
With a centralised system providing complete visibility of all
the defects along with some encouragement to fix the
problems, developers have become more diligent in their
development practice. Defects are now fixed promptly.

Complementing dynamic analysis, Coverity has greatly
helped in debugging hard to diagnose problems.

Coverity as a static analysis tool used in conjunction with
dynamic analysis is an invaluable solution in any
development process.

16

Additional static analysis tools

¢ Rule Checker [3): performs static code check according to predefined
rules, ensuring compliance with both C/C++ coding standards and
experiment specific coding conventions. The analysis process is as
follows:

¢ In the source directory: $ svn update && make check-all

¢ After analysis has completed, the following reports are produced
and sent to the developer to be fixed:

NamingRule: "RN13" : Local variables names start with a lower case letter.
the variable: AcoHit
[file: AIACORDEQADataMaker.cxx line:198] does not start with a lower case letter

CodingRule: "RC11": Make const all member functions that are not supposed to change member
data.

the method: ASideHasHit

in file [file:AliIFMDOfflineTrigger.cxx line: 60] can be declared const

The Rule Checker has been developed by the Bruno Kessler Foundation

¢ cppcheck (10— open source static code analysis tool.
17

Bibliography

1. ‘Welcome to the home page of the ALICE Off-line Project’ <URL http://aliceinfo.cern.ch/Offline>
[accessed 26 June 2011].

2. ‘AliRoot documentation’ <URL http://aliceinfo.cern.ch/Offline/AliRoot/Manual.htm|>
[accessed 26 June 2011] .

3. ‘Test: Code in Development’ <URL http://www.coverity.com/products/>
[accessed 26 June 2011] .

4. ‘CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer’
<URL http://cwe.mitre.org/data/definitions/119.html> [accessed 26 June 2011] .

5. ‘CWE-416: Use After Free’ <URL http://cwe.mitre.org/data/definitions/416.html>
[accessed 26 of June 2011].

6. ‘CWE-404: Improper Resource Shutdown or Release’
<URL http://cwe.mitre.org/data/definitions/404.html> [accessed 26 June 2011] .

7. 'CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')’
<URL http://cwe.mitre.org/data/definitions/120.htmlI> [accessed 26 of June 2011].

8. ‘Coding Conventions’
<URL http://aliceinfo.cern.ch/Offline/AliRoot/Coding-Conventions.html> [accessed 26 June 2011] .

9. ‘Fondazione Bruno Kessler’ <URL http://www.fbk.eu/> [accessed 26 June 2011] .

10. ‘cppcheck: a tool for static C/C+ code analysis’ 18
<URL http://cppcheck.sourceforge.net/> [accessed 26 June 2011].

http://aliceinfo.cern.ch/Offline
http://aliceinfo.cern.ch/Offline/AliRoot/Manual.html
http://www.coverity.com/products/
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/416.html
http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/120.html
http://aliceinfo.cern.ch/Offline/AliRoot/Coding-Conventions.html
http://www.fbk.eu/
http://cppcheck.sourceforge.net/

	Title page
	AliRoot framework
	Coverity analysis
	Coverity features
	AliRoot static analysis setup
	Coverity automation and use policy
	Coverity results for AliRoot
	Coverity defect classification
	High impact defect: Out of bounds write
	Another example: Out of bounds write
	High impact defect: Use after free
	High Impact defect: Resource leak
	Medium and Low impact defects
	False positives
	Modeling in Coverity
	Coverity overview
	Additional static analysis tools
	Bibliography

