
Future of Grid parallel exploitation

Roberto Alfieri - Parma University & INFN – Italy

SuperbB Computing R&D Workshop - Ferrara 6/07/2011 1

2

Outline

MPI support in the current grid middleware (gLite)

MPI and multi-thread support in the forthcoming EMI middleware

– Wholenodes reservation support (new JDL attributes)

– CPU affinity and hybrid programming support (new mpi-start)

– Use-cases analysis

Status of parallel clusters in grid

 supporting a preliminary version of the new features

Conclusions

LSF

3

Current MPI support in Grid
 (gLite middleware)

Requirements Solution Description

- Multiple CPU allocation JDL
attribute

CPUnumber=4

- Files distribution among nodes
- Multiple MPI version/flavour Support
- Get the MPI machine-file from the job manager
- Pre/Post Execution scripts

MPI-start

- The user has to specify MPI flavour
and pre/post hook scripts
- The other information are detected
by MPI-start from the cluster
environment

CPUnumber = 4;

Executable = "mpi-start-wrapper.sh";

Arguments = "my-mpi-prog OPENMPI";

InputSandbox = "mpi-start-wrapper.sh mpi-hooks.sh my-mpi-prog";

….

P P P P openMPI

mpich2

mpich2

LAM

PBS

4

MPI-start

4/13/2011

distribute the files if home is not shared

run pre-hook script

run post-hook script

$MPIBIN/mpiexec -np $CPUnumber -hostfile $HOSTFILE executable

MPI-start (originally developed by HLRS – Stuttgart) is a set of scripts that ease the

execution of MPI programs by using a unique and flexible interface to the resources.

The adoption of MPI-start in gLite comes from the EGEE MPI-WG recommendations
http://www.grid.ie/mpi/wiki/ (2007-2008)

MPI-start is a wrapper for mpiexec:

http://www.grid.ie/mpi/wiki/

Cluster model in the

current Grid middleware

5

Communication types in modern Worker Nodes

Comm Type Comm. device Latency MAX Bandw.

1 Intra-socket SHared Mem - L3 Cache or DDR 640 ns (DDR) 14 GBytes/s

2 Intra-node SHared Mem - NUMA (HT or QPI) 820 ns 12 GBytes/s

3 Extra-node Infiniband 3300 ns 11 GBytes/s

2 1 3

Measured network performance (on CSN4cluster, using NetPIPE):

The Grid middleware should support new features for parallel clusters:

-- multi-threaded parallelism (to exploit the SHM comm. model in multi-core architectures)

-- CPU/memory affinity (ability to bind a process to a specific core or memory bank,

 needed to exploit the cache effect and avoid the NUMA bottleneck)

P P P P

P P P P

 In modern clusters the processors are multicore,

the memory access is NUMA and we have at least

3 communication types.

PBS

6

Forthcoming parallelism support
 (EMI middleware)

New Requirements Solution

- Multiple CPU allocation with granularity

selection supporting multi-threaded applications

New JDL attributes

- CPU / memory affinity control

- openMP support (Hybrid programming)

Enhanced mpi-start

#CPUnumber=4;

Wholenodes=true;

HostNumber=2;

SMPGranularity=8;

Executable= "mpi-start";

Arguments=“-t openmpi -psoket -- my-prog";

InputSandbox="my-prog";

P P P P

openMPI

mpich2

openMPI

mpich2

LSF

7

New JDL attributes

CPUNumber = 64; # 32 nodes, with 2 CPUs per node

SMPGranularity = 2; # (SMPsize >=2)

WholeNodes=true; # 2 whole nodes with SMPsize>=8

HostNumber=2;

SMPGranularity=8;

WholeNodes=true; # 1 whole node with SMPsize>=8

SMPGranularity=8; # (default HostNumber=1)

Examples

New JDL

attributes

Attribute Meaning

CPUNumber=P Total number of required CPUs

SMPGranularity=C Minimum number of cores per node

HostNumber=N Total number of required nodes

WholeNodes=true Reserve the whole node (all cores)

Note:

CPUnumber and

Wholenodes are

alternative to each other

In 2009 EGEE designated a new MPI-WG.

Purpose: to provide a solution for the support of the upcoming multicore architectures.

The recommendation document, http://www.grid.ie/mpi/wiki/WorkingGroup released in

06/2010, proposes the following new attributes:

http://www.grid.ie/mpi/wiki/WorkingGroup

AFFINITY LIBRARIES

CPU/memory Affinity can be controlled through a specific library such as “Numactl”, or

the “Sched Affinity” provided by GNU.

Examples: numactl --cpubind=0 ./my-progr

 numactl --cpubind=1 ./my-progr

AFFINITY CONTROL IN MPI

Affinity is supported by the principal MPI implementations.

OpenMPI provides a set of command line options such as:

 --pernode, --npersocket, --npernode, --rankfile , etc.

Examples:

mpiexec --pernode -host wn1,wn2 my-mpi-prog

mpiexec --npersocket 2 -host wn1,wn2 my-mpi-prog

8

CPU Affinity control

 wn1 wn2

P P

P P P P P P P P

 0 1

P

P

 b

9

New MPI-start

4/13/2011

distribute the files if home is not shared

 sh pre.sh

sh post.sh

$MPIBIN/mpiexec -hostfile $HOSTFILE -npersocket 1 executable

the affinity options are

detected from the cluster

environment

The new Mpi-start tool included

 in EMI is maintained by Enol

Fernandez (https://devel.ifca.es/mpi-start).

It is backward compatible, but

supports a new syntax with command

line options (still under development)

Example:

export OMP_NUM_THREADS=NT

Main Options meaning

-t type Select the Mpi flavor

-pre HOOK -post HOOK pre/post run hook script

Affinity/OMP Options

-pcore|-psocket|-pnode Start 1 process per
core|socket|node

-npnode N Start N processes per node

-npsocket N Start N processes per socket

The threads number
is detected from the

cluster environment

(SMPsize/Mpi per node)

mpi-start -t openmpi -pre pre.sh -post post.sh

 -psocket -- executable";

https://devel.ifca.es/mpi-start
https://devel.ifca.es/mpi-start
https://devel.ifca.es/mpi-start

10

Use case: 2GB per MPI process

#!/bin/bash

lcg-cp -v lfn:/grid/theophys/my-prog file://$(pwd)/my-mpi-prog

lcg-cp -v lfn:/grid/theophys/file.in file://$(pwd)/file.in

mpi-start -npsocket 2 --t openmpi -- my-mpi-prog < file.in > file.out

lcg-cr -v -l lfn:/grid/theophys/file.out file://$(pwd)/file.out

Executable = “starter.sh";

StdOutput = "std.out";

StdError = "std.err";

InputSandbox = {“starter.sh"};

OutputSandbox = {"std.err","std.out"};

WholeNodes = "true"

HostNumber = “2"

SMPGranularity = "8"

starter.jdl

starter.sh

P P P P P P P P

APPLICATION NEEDS 8 MPI processes, 2GB per MPI process

RESOURCES 2 sockets per node, 4 cores per socket , 1 GB per core

11

Use case: 1 openMP program per socket

#!/bin/bash

OMP_NUM_THREADS=6 numactl --cpubind=0 ./my-omp-appl < file0.in > file0.out &

OMP_NUM_THREADS=6 numactl --cpubind=1 ./my-omp-appl < file1.in > file1.out &

Executable = “starter.sh";

StdOutput = "std.out";

StdError = "std.err";

InputSandbox = {“starter.sh“,”my-omp-appl”};

OutputSandbox = {"std.err","std.out"};

WholeNodes = "true"

HostNumber = “1"

SMPGranularity = “12"

starter.jdl

starter.sh

omp

APPLICATION NEEDS 1 openMP program per socket, 1 thread per socket core

RESOURCES 2 sockets per node, 6 cores per socket

0 1

omp

12

Use case:1 MPI per socket, 1 thread per core

#!/bin/bash

lcg-cp -v lfn:/grid/theophys/my-prog file://$(pwd)/my-hybrid-prog

lcg-cp -v lfn:/grid/theophys/file.in file://$(pwd)/file.in

mpi-start -psocket -t openmpi -- my-hybrid-prog < file.in > file.out

lcg-cr -v -l lfn:/grid/theophys/file.out file://$(pwd)/file.out

Executable = “starter.sh";

StdOutput = "std.out";

StdError = "std.err";

InputSandbox = {“starter.sh"};

OutputSandbox = {"std.err","std.out"};

WholeNodes = "true"

HostNumber = “2"

SMPGranularity = "8"

starter.jdl

starter.sh

APPLICATION NEEDS 4 hybrid processes, 1 MPI per socket, 1 thread per socket core

RESOURCES 2 socket per node, 4 cores per socket

mpi mpi mpi mpi

13

Parallel clusters in Grid

In collaboration with the developers of Cream-CE (M. Sgaravatto team, summer 2010)

and MPI-start (E. Fernandez, still on going) a preliminary support to the new MPI

features has been released and installed at 2 INFN sites:

INFN-Pisa : CSN4Cluster is the centralized facility for parallel and serial computations

for the theoretical physics community (Gruppo IV)

 - Resources: 128x8 cores (10 TFlops peak perf.), Infiniband, LSF, openMPI

 - Official inauguration : 13/04/2011

 - Wiki site: http://wiki.infn.it/cn/csn4/calcolo/csn4cluster/home

INFN-Parma : 8x8 cores, PBS, openMPI

- 2 Virtual Organizations (theophys and comput-er.it) are currently running parallel

applications (lattice field theory, relativistic astrophysics, molecular dynamics,

electronic-structure calculations) on the clusters

http://wiki.infn.it/cn/csn4/calcolo/csn4cluster/home

14

Parallel queues access and organization

Resource access:

Parallel queues are special Grid resources.

To prevent the access from generic serial jobs we have introduced a special Role (role=parallel)

which is granted to parallel job users.

 voms-proxy-init –voms theophys:/theophys/Role=parallel

Queues organization:

At Pisa site 2 queues have been created on the same pool of WNs:

parallel : parallel job only, runtime 72h, Reservation time max 8h on the free job slots

short : short jobs, runtime 4h (shorter than the reservation time)

- The “short” queue allows the exploitation of cores when they are unused by parallel jobs

- Backfill scheduling technique enables short Jobs to use slots reserved for parallel Jobs

P0

P1

P2

P3

P4

P5

Parallel A

(4 cores)

reservation Max 8h

Parallel B

(6 cores)

short short

time

 s
u

m
b

it
 B

s
u

b
m

it
 A

15

Conclusions and future work

At present we have parallel clusters (both LSF and PBS) in Grid working with a

preliminary support of the “wholenodes” attributes and a preliminary version of the

new MPI-start tool.

EMI will provide in the near future an extended and stable support for parallel jobs

(pure MPI, multi-threaded and hybrid).

A collaboration among interested VOs (so far “theophys” and “comput-er.it”) is on

going aiming at the definition of common basis for parallel clusters configuration,

usage and future developments in Grid.

Thank you

for your attention!

16

