
(Databases)
a (very) short overview of NoSQL, !rDBMS world

L. Tomassetti



Status

• HEP experiment mostly use rDBMS

• Oracle + Frontier

• Mysql

• + Custom software to access (meta)data



Status

• Web portal access (usually Java + Python 
clients)

• Integrated access into analysis applications 
(COOL, POOL, CORAL, Custom calls, 
etc...)



noSQL trend

• Pushed by industry and commercial 
companies

• Best fitted use case is Web-related

• Large datasets management

• Deployed (and developed) by Big 
companies like facebook, amazon, google, 
etc...



noSQL
• Many products available (using different 

approaches):

• MongoDB (document store)

• CouchDB (document store)

• Cassandra/HBase/etc... [hadoop family]
(multi/wide column)

• Redis (key/value)

• many others



CouchDB

• Apache CouchDB is a document-oriented database that 
can be queried and indexed in a MapReduce fashion using 
JavaScript. CouchDB also offers incremental replication 
with bi-directional conflict detection and resolution.

• CouchDB provides a RESTful JSON API than can be 
accessed from any environment that allows HTTP 
requests. There are myriad third-party client libraries that 
make this even easier from your programming language 
of choice. CouchDB’s built in Web administration console 
speaks directly to the database using HTTP requests 
issued from your browser.

couchdb.apache.org
see also www.couchbase.com



MongoDB
• MongoDB (from "humongous") is a scalable, high-performance, open 

source, document-oriented database. Written in C++, MongoDB features:

• Document-oriented storage » JSON-style documents with dynamic 
schemas offer simplicity and power.

• Full Index Support » Index on any attribute.

• Replication & High Availability » Mirror across LANs and WANs for 
scale.

• Auto-Sharding » Scale horizontally without compromising functionality.

• Querying » Rich, document-based queries.

• Fast In-Place Updates » Atomic modifiers for contention-free 
performance.

• Map/Reduce » Flexible aggregation and data processing.

www.mongodb.org

http://www.mongodb.org/display/DOCS/Source+Code
http://www.mongodb.org/display/DOCS/Source+Code
http://www.mongodb.org/display/DOCS/Source+Code
http://www.mongodb.org/display/DOCS/Source+Code
http://www.mongodb.org/display/DOCS/Schema+Design
http://www.mongodb.org/display/DOCS/Schema+Design
http://bsonspec.org/
http://bsonspec.org/
http://www.mongodb.org/display/DOCS/Indexes
http://www.mongodb.org/display/DOCS/Indexes
http://www.mongodb.org/display/DOCS/Replication
http://www.mongodb.org/display/DOCS/Replication
http://www.mongodb.org/display/DOCS/Sharding
http://www.mongodb.org/display/DOCS/Sharding
http://www.mongodb.org/display/DOCS/Querying
http://www.mongodb.org/display/DOCS/Querying
http://www.mongodb.org/display/DOCS/Updating
http://www.mongodb.org/display/DOCS/Updating
http://www.mongodb.org/display/DOCS/MapReduce
http://www.mongodb.org/display/DOCS/MapReduce
http://www.mongodb.org
http://www.mongodb.org


Cassandra
• The Apache Cassandra Project develops a highly scalable second-generation distributed database, 

bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model.
Cassandra was open sourced by Facebook in 2008, and is now developed by Apache committers and 
contributors from many companies.

• Cassandra is in use at Digg, Facebook, Twitter, Reddit, Rackspace, Cloudkick, Cisco, SimpleGeo, Ooyala, 
OpenX, and more companies that have large, active data sets. The largest production cluster has over 
100 TB of data in over 150 machines. 

• Fault Tolerant Data is automatically replicated to multiple nodes for fault-tolerance. Replication 
across multiple data centers is supported. Failed nodes can be replaced with no downtime. 

• Decentralized Every node in the cluster is identical. There are no network bottlenecks. There are no 
single points of failure. 

• Synchronous or asynchronous replication for each update. Highly available asynchronus operations are 
optimized with features like Hinted Handoff and Read Repair.

• Rich Data Model Allows efficient use for many applications beyond simple key/value. 

• Elastic Read and write throughput both increase linearly as new machines are added, with no 
downtime or interruption to applications. 

• Durable Cassandra is suitable for applications that can't afford to lose data, even when an entire data 
center goes down.

cassandra.apache.org
see also hadoop.apache.org

http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
http://labs.google.com/papers/bigtable.html
http://labs.google.com/papers/bigtable.html
http://www.facebook.com/note.php?note_id=24413138919
http://www.facebook.com/note.php?note_id=24413138919
http://wiki.apache.org/cassandra/Committers
http://wiki.apache.org/cassandra/Committers
https://issues.apache.org/jira/secure/ConfigureReport.jspa?versionId=-1&issueStatus=closed&selectedProjectId=12310865&reportKey=com.sourcelabs.jira.plugin.report.contributions%3Acontributionreport&Next=Next
https://issues.apache.org/jira/secure/ConfigureReport.jspa?versionId=-1&issueStatus=closed&selectedProjectId=12310865&reportKey=com.sourcelabs.jira.plugin.report.contributions%3Acontributionreport&Next=Next
http://about.digg.com/node/564
http://about.digg.com/node/564
http://www.facebook.com/note.php?note_id=24413138919
http://www.facebook.com/note.php?note_id=24413138919
http://nosql.mypopescu.com/post/407159447/cassandra-twitter-an-interview-with-ryan-king
http://nosql.mypopescu.com/post/407159447/cassandra-twitter-an-interview-with-ryan-king
http://blog.reddit.com/2010/03/she-who-entangles-men.html
http://blog.reddit.com/2010/03/she-who-entangles-men.html
http://www.rackspacecloud.com/blog/2009/09/23/the-cassandra-project/
http://www.rackspacecloud.com/blog/2009/09/23/the-cassandra-project/
https://www.cloudkick.com/blog/2010/mar/02/4_months_with_cassandra/
https://www.cloudkick.com/blog/2010/mar/02/4_months_with_cassandra/
http://n2.nabble.com/Cassandra-users-survey-tp4040068p4040393.html
http://n2.nabble.com/Cassandra-users-survey-tp4040068p4040393.html
http://wiki.apache.org/cassandra/HintedHandoff
http://wiki.apache.org/cassandra/HintedHandoff
http://wiki.apache.org/cassandra/ReadRepair
http://wiki.apache.org/cassandra/ReadRepair
http://wiki.apache.org/cassandra/Durability
http://wiki.apache.org/cassandra/Durability


Redis

• Redis is an open source, advanced key-value store. It is often referred to as a 
data structure server since keys can contain strings, hashes, lists, sets and sorted 
sets.

• You can run atomic operations on these types, like appending to a string; 
incrementing the value in a hash; pushing to a list; computing set intersection, 
union and difference; or getting the member with highest ranking in a sorted set.

• In order to achieve its outstanding performance, Redis works with an in-memory 
dataset. Depending on your use case, you can persist it either by dumping the 
dataset to disk every once in a while, or by appending each command to a log.

• Redis also supports trivial-to-setup master-slave replication, with very fast non-
blocking first synchronization, auto-reconnection on net split and so forth.

• Other features include a simple check-and-set mechanism, pub/sub and 
configuration settings to make Redis behave like a cache.

redis.io

http://redis.io/topics/data-types#strings
http://redis.io/topics/data-types#strings
http://redis.io/topics/data-types#hashes
http://redis.io/topics/data-types#hashes
http://redis.io/topics/data-types#lists
http://redis.io/topics/data-types#lists
http://redis.io/topics/data-types#sets
http://redis.io/topics/data-types#sets
http://redis.io/topics/data-types#sorted-sets
http://redis.io/topics/data-types#sorted-sets
http://redis.io/topics/data-types#sorted-sets
http://redis.io/topics/data-types#sorted-sets
http://redis.io/commands/append
http://redis.io/commands/append
http://redis.io/commands/hincrby
http://redis.io/commands/hincrby
http://redis.io/commands/lpush
http://redis.io/commands/lpush
http://redis.io/commands/sinter
http://redis.io/commands/sinter
http://redis.io/commands/sunion
http://redis.io/commands/sunion
http://redis.io/commands/sdiff
http://redis.io/commands/sdiff
http://redis.io/commands/zrangebyscore
http://redis.io/commands/zrangebyscore
http://redis.io/topics/persistence#snapshotting
http://redis.io/topics/persistence#snapshotting
http://redis.io/topics/persistence#snapshotting
http://redis.io/topics/persistence#snapshotting
http://redis.io/topics/persistence#append-only-file
http://redis.io/topics/persistence#append-only-file
http://redis.io/topics/replication
http://redis.io/topics/replication
http://redis.io/topics/transactions
http://redis.io/topics/transactions
http://redis.io/topics/pubsub
http://redis.io/topics/pubsub
http://redis.io/topics/cache
http://redis.io/topics/cache


R&D activities

• Some tests have been started trying to 
model the bookkeeping (part of) database 
used by the production tools with:

• CouchDB

• MongoDB



CouchDB test

• Work in progress

• Created a collection with FastSim metadata of 
2010_September production (~85 kJobs)

• Just state-switch records (prepared, submitted, 
running, finished) ~350 kEntries

• with and without revisions

• Unexpectedly slow (>10 minutes for inserts / updates)

• Large disk occupancy (~GB w.r.t. few MB)



Some lessons already 
learned

• Db structure strongly depends on querying 
patterns

• Data access (mostly) through REST 
interface and JSON

• Needs to develop proper APIs to provide 
easy interactions with users/applications



Future R&D work

• Same test in progress with MongoDB

• Collaboration with Bari (D. Diacono), Pisa (A. Fella), 
Ferrara (LT + students) and hopefully others...

• Studying APIs, best practices in coding, etc...
for both products

• Indentifying use cases for test units preparation

• Keep an eye on rDBMS usage evolution and 
connections with Online + Persistence



Discussion items

• Use cases to start with...

• Conditions DB, Bookkeeping DB, ...

• Online / offline (is it necessary to keep a 
separation?)

• Data access patterns

• Timeseries (other?) reduction?



XLDB-2011

• 5th Extremely Large Databases Conference, October 18-19, 2011
SLAC National Accelerator Laboratory

• The XLDB conference focuses on the management and analysis of data 
at extreme scale. It provides a unique opportunity to meet and learn 
from leading practitioners from science, industry, and academia working 
on real-world solutions for handling terabytes and petabytes of data.

• This year's event includes in-depth presentations about tools and 
practices at Facebook, eBay, Google, Zynga, and the National Center for 
Biotechnology Information; stories about growing to large scale from 
Novartis, Netflix and LinkedIn, and discussion panel on cloud computing 
at scale. Peta-scale data simulation, peta-scale data visualization, as well 
as scalability of statistical tools such as R will be discussed.

I’m
 lookin

g fo
r sp

onsor(s)
!


