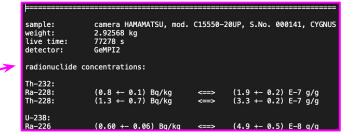
CYGNO-04 Status of material scrutiny work

Ernesto Kemp

Collaboration mtg - 06/dez/2023


Data available right now

 Anna Calanca masters' thesis (2022-2023)

CHARACTERIZATION OF PROTOTYPES OF A
GASEOUS TPC WITH OPTICAL READOUT
FOR THE CYGNO EXPERIMENT

Some spreadsheets
 Anna + Giulia (simulation data)

Matthias results (.txt files)

Anna's thesis: measurements at LNF and STELLA facilities

- LNF: proved to be not enough accurate
- STELLA measurements (@ LNGS underground lab):

o camera:

Sample	Supplier	weight [g]	live time [s]	Ra-228	Th-228	Ra-226	Pa-234m
ccd, mod. C11440-52U, board only	Hamamatsu	225,5	1190529	$1,03 \pm 0,06$	$1,06 \pm 0,06$	$1,15 \pm 0,04$	$1{,}1\pm0{,}2$
PRIME-BSI EXPRESS	Teledyne	719,1	58484	$1,3 \pm 0,1$	$1,8 \pm 0,1$	$1,00 \pm 0,06$	6 ± 2
orca-flash4.0, model C11440-22CU	Hamamatsu	4.08	83383	$2,1 \pm 0,2$	$2,1 \pm 0,1$	$1,8 \pm 0,1$	7 ± 2
cMOS	Thorlabs Quantalux	264,6	644410	$0,\!26\pm0,\!02$	$0,63 \pm 0,03$	$0,21 \pm 0,01$	$3,0 \pm 0,4$

Sample	Supplier	weight [g]	live time [s]	U-235	K-40	Cs-137	Co-60
ccd, mod. C11440-52U, board only	Hamamatsu	225,5	1190529	0.06 ± 0.01	4.3 ± 0.4	$(7 \pm 1)e-3$	<1,2
PRIME-BSI EXPRESS	Teledyne	719,1	58484	0.27 ± 0.06	$3,6 \pm 0,5$	<32 e-3	<17e-3
orca-flash4.0, model C11440-22CU	Hamamatsu	4.08	83383	0.4 ± 0.1	$1,9 \pm 0,3$	0.09 ± 0.03	< 0,012
cMOS	Thorlabs Quantalux	264,6	644410	0.12 ± 0.01	$1,2 \pm 0,1$	< 0,0023	< 0,0055

copper shielding:

Sample	Sample weight [g]	live time [s]	Ra-228	Th-228	Ra-226	Th-234	Pa-234m	U-235
Copper frame	649	1751947	< 0,35	< 0,43	< 0,42	<67	<25	< 0,51
two pieces with pins of two copper frames	12,54	844883	$0,23 \pm 0,05$	$0,27 \pm 0,05$	$0,23 \pm 0,05$	$\pm 0,90$	<6,5	<56 e-3

Sample	Sample weight [g]	live time [s]	K-40	Cs-137	Co-60	Co-58	Mn-54	Pb 210
Copper frame	649	1751947	<1,9	< 0,15	< 0,18	$0,3 \pm 0,1$	< 0,14	_
two pieces with pins of two copper frames	12,54	844883	$1,8 \pm 0,5$	<19 e-3	<52 e-3	< 25 e- 3	<23 e-3	75 ± 8

Anna's spreadsheet: additional data from other parts / materials

Camera: broken-down list

piece #	description	weight [kg]	Ra228 from Th232 [Bq/kg]	Th228 from Th232 [Bq/kg]	Ra226 from U238 [Bq/kg]	Th234 from U238 [Bq/kg]	Pa234m from U238 [Bq/kg]	K40 [Bq/ kg]	U235 [Bq/kg]	Cs 137 [Bq/ kg]
1	CMOS sensor	0,0109	0,4770642	0,486238	0,623853	1,0091743	0,6422018	321,100917	0,0834862	0,0385321100
2	sensor frame	0,0232	4,8706896	4,784482	3,448275	12,5	6,034482	3,44827586	0,2586206	0,0370689655
3	sensor frame holder	0,068	0,1029411	0,235294	0,067647	7,3529411	3,8235294	1,17647058	0,2205882	0,0147058823
4	peltier cooler	0,1862	0,0019334	0,001288	0,000912	0,06444683	0,1127819	0,01396348	0,0010741	0,0002900107
5	electronic board	0,0412	5,0485436	4,902912	4,538834	3,88349514	6,067961	5,82524271	0,2184466	0,0485436893

GEMs

22		in m2	mBq/pc							
23	GEM foil	0,048	0,19	0,096	0,2	1	5	2,2	0,097	0,05
24			Bq/m2							
25		48	0,0039583	0,002	0,004166	0,02083333	0,1041666	0,04583333	0,0020208	0,0010416666

Lens / Window

27	old camera objective	0,2135	0,3606557	0,365339	1,920374		4,2154566	51,5222482	0,1451990	0,0463700234
28	Suprasil	0,220	0,0011	0,0013	0,00066	0,013	0,028	0,0015	0,00045	0,0054

Giulia's spreadsheet: additional data from other parts / materials

GEMs

I	A	В	С	D	E	F.	G	Н	1	J	К	L	М
	GEM	Reference	Limit/Meas	Activity (Bq/kg)	mass (kg)	Ngen	t_eq (year)	Activity (mBq/p	piece mass (kg	Comments	CYGNO mass (Activity (microBq/cm^2)	tot surf (cm^2)
	U238 (Th234)	Laubenstein @LNGS	M	1.63E-01	0.7	1.00E+06	2.79E-01	1	0.00615		1.62	1.95E+00	512
	U238 (Ra226)	Laubenstein @LNGS	М	3.25E-02	0.7	1.00E+06	1.39E+00	0.2	0.00615			3.91E-01	512
	U235	Laubenstein @LNGS	L	1.58E-02	0.7	1.00E+06	2.87E+00	0.097	0.00615			1.89E-01	512
	Th232 (Ra228)	Laubenstein @LNGS	L	3.09E-02	0.7	1.00E+06	1.47E+00	0.19	0.00615			3.71E-01	512
	Th232 (Th228)	Laubenstein @LNGS	L	1.56E-02	0.7	1.00E+06	2.90E+00	0.096	0.00615			1.88E-01	512
	K40	Laubenstein @LNGS	L	3.58E-01	0.7	1.00E+07	1.27E+00	2.2	0.00615			4.30E+00	512
	Cs137	Laubenstein @LNGS	L	8.13E-03	0.7	1.00E+07	5.57E+01	0.05	0.00615			9.77E-02	51:
	Co60	Laubenstein @LNGS	L	7.48E-03	0.7	1.00E+07	6.06E+01	0.046	0.00615			8.98E-02	512
Ц													
	GEM	Reference	Limit/Meas	Activity (Bq/kg)	mass (kg)	Ngen	t_eq (year)					Activity (microBq/cm^2)	tot surf (cm^2)
•	U238	TREX https://link.sp	L	1.32E-02	0.008025	1.00E+06	2.98E+02					1.70E-01	625
	Th232	TREX https://link.sp	М	5.45E-03	0.008025	1.00E+06	7.25E+02					7.00E-02	625
	U235	TREX https://link.sp	М	2.80E-02	0.008025	1.00E+06	1.41E+02					3.60E-01	625
	K40	TREX https://link.sp	М	6.31E-02	0.008025	1.00E+07	6.26E+02					8.10E-01	625
	Co60	TREX https://link.sp	L	2.34E-03	0.008025	1.00E+07	1.69E+04					3.00E-02	629
	Cs137	TREX https://link.sp	L	1.56E-03	0.008025	1.00E+07	2.54E+04					2.00E-02	62

Background assessment for the TREX dark matter experiment

J. Castel^{1,2}, S. Cebrián^{1,2,a}, I. Coarasa^{1,2}, T. Dafni^{1,2}, J. Galán^{1,2,3}, F. J. Iguaz^{1,2,4}, I. G. Irastorza^{1,2}, G. H. Mirallas^{1,2}, A. Ortiz de Solórzano^{1,2}, E. Ruiz-Chóliz^{1,2}

Eur. Phys. J. C (2019) 79:782 https://doi.org/10.1140/epjc/s10052-019-7282-6

Giulia's spreadsheet: additional data from other parts / material

Hamamatsu, orca-flash4.0,

Th232 (Th228)

K40

Cs137

Co60

La138

Laubenstein @LNGS M

Laubenstein @LNGS M

Laubenstein @LNGS L

Laubenstein @LNGS L

Laubenstein @LNGS M

	Reference	Limit/Meas	Activity (Bq/kg)	mass (kg)	Ngen	t_eq (year)	Activity (Bq/pc)	piece mass (kg)
U238 (Th234)	Laubenstein @LNGS	М	3.16E+00	3.98E+01	3.00E+07	7.55E-03	7	2.21275
U238 (Ra226)	Laubenstein @LNGS	М	8.13E-01	3.98E+01	3.00E+07	2.94E-02	1.8	2.21275
U235	Laubenstein @LNGS	М	1.81E-01	3.98E+01	3.00E+07	1.32E-01	0.4	2.21275
Th232 (Ra228)	Laubenstein @LNGS	М	9.49E-01	3.98E+01	3.00E+07	2.52E-02	2.1	2.21275
Th232 (Th228)	Laubenstein @LNGS	М	9.49E-01	3.98E+01	3.00E+07	2.52E-02	2.1	2.21275
K40	Laubenstein @LNGS	М	8.59E-01	3.98E+01	3.00E+07	2.78E-02	1.9	2.21275
Cs137	Laubenstein @LNGS	М	4.07E-02	3.98E+01	3.00E+07	5.87E-01	0.09	2.21275
Co60	Laubenstein @LNGS	L	5.42E-03	3.98E+01	3.00E+07	4.40E+00	0.012	2.21275

A 18 5 18 1			1 2 2 2 2 2						
Cs137	Laubenstein @L	NGS M	4.0	7E-02 3.98E+	+01 3.00E+07	5.87E-01	0.09	2.21275	
Co60	Laubenstein @L	NGS L	5.4	2E-03 3.98E+	+01 3.00E+07	4.40E+00	0.012	2.21275	
	D. (1	+	useful for futur				
Camera Lens (glass)	Reference	Limit/Meas	Activity (Bq/kg) ı	Camera Lens (fused	Reference	Acrylic	Reference	Limit/Meas	Activity (Bq/kg)
U238 (Th234)	Laubenstein @LNGS	М	4.22E+00	U	Haereus Suprasil: http://	U238 (Ra226)	Laubenstein @LNGS	L	3.50E-03
U238 (Ra226)	Laubenstein @LNGS	M	1.92E+00	Th	Haereus Suprasil: http	Th232 (Ra228)	Laubenstein @LNGS	L	5.00E-03
U235	Laubenstein @LNGS	M	1.45E-01	K	Haereus Suprasil: http	Th232 (Th228)	Laubenstein @LNGS	L	4.50E-03
0233									
Th232 (Ra228)	Laubenstein @LNGS	М	3.61E-01			K40	Laubenstein @LNGS	L	3.50E-02

Acrylic

Th

Reference

SNO: https://www.radi L

SNO: https://www.radi L

SNO: https://www.radi L

3.65E-01

5.15E+01

2.67E-02

4.64E-02

2.44E+00

2.96E-04

5.69E-05

7.12E-05

Limit/Meas Activity (Bq/kg)

STELLA: some more additional data

PMTs: not in the spreadsheet!

```
sample:
               n. 8 PMT Hamamatsu, type: R7378A, CYGNUS
weight:
               135.3 g (total)
live time:
               488867 s
detector:
                GePV
radionuclide concentrations:
```

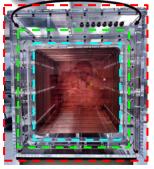
- To be done: double check STELLA data x Spreadsheet
 - consistency of different records
 - checksum camera parts x camera total
- Ongoing measurements: flexible PCB sheet
 - Delivered to Matthias on 25/oct/2023
- PMMA: perhaps we already have (D. Pinci is checking)

What do we need? : action items list

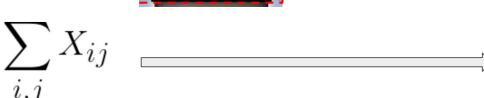
- To update and consolidate: ≠ spreadsheets + Stella results
- To check: the consistency between current info ←→ DESIGN
- To list: missing parts / materials
 - Help from designers
- To build: a Data Base (SQL)
 - Spreadsheet (prototype) → DB
 A comprehensive DB is useful to assess the BKG contributions at any level
 - Monte Carlo: BKG studies, sensitivity calculations, data validation
 - Data Analysis: systematics evaluation, cuts, etc...

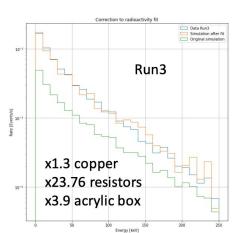
What do we need? proposal: additional DB fields

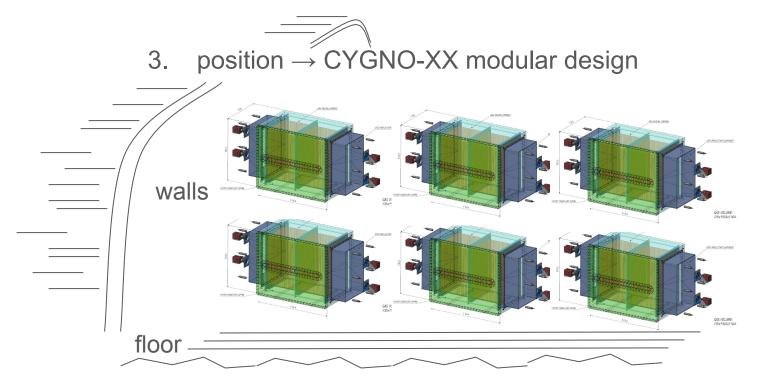
- A comprehensive DB is useful to assess the BKG contributions at any level
 - BKG breaking down:
 - 1. single parts


 X_i

2. subsystems







What do we need? : proposal

- A comprehensive DB is useful to assess the BKG contributions at any level
 - BKG breaking down: 1. single parts; 2. subsystems... &

