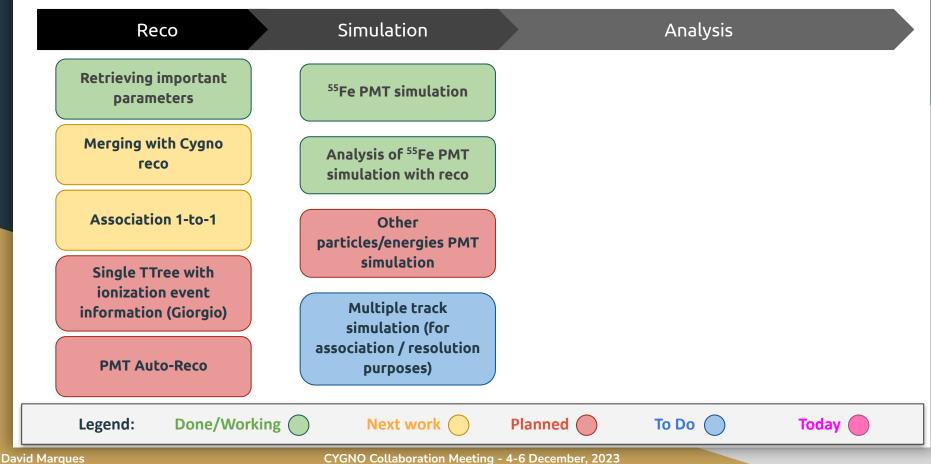
PMTs:

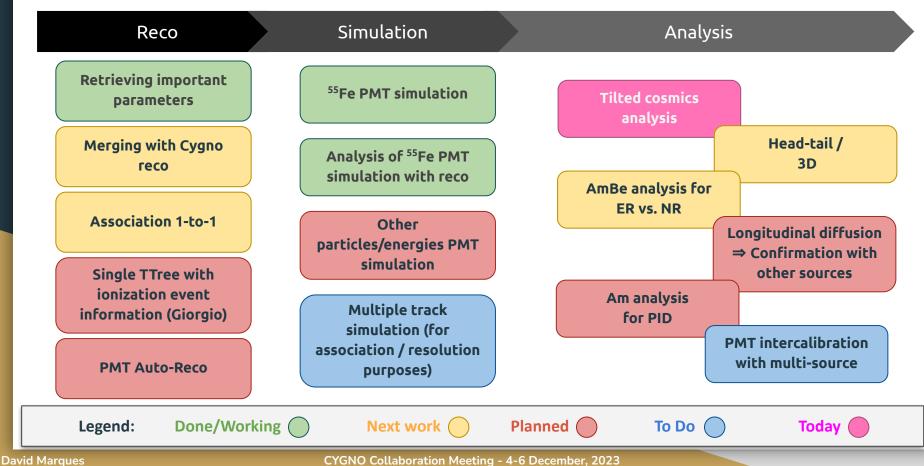
Ongoing Analysis & Future

CYGNO Collaboration Meeting

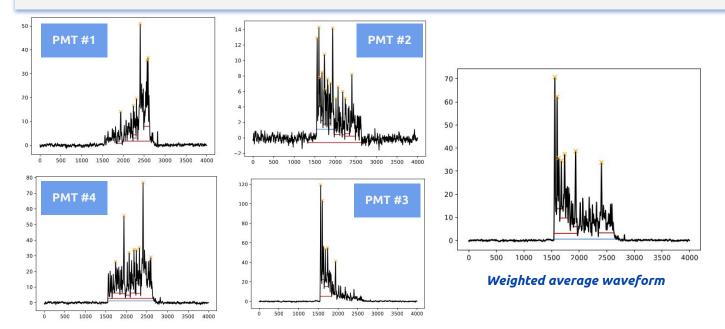
Frascati, 4-6 December, 2023

David Marques

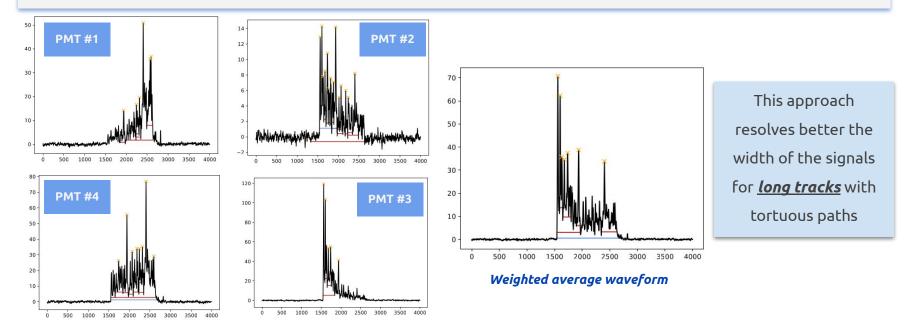

& PMT analysis working group


Contents

- 1. Overview of PMT works
- 2. Time over Threshold explanation
- **3.** Tilted cosmics analysis
 - a. Motivation
 - b. Setup
 - c. Results and discussion
 - i. Follow up?
- 4. Next analysis
 - a. LIME ⇒ Am(Be); PID; 3D
 - b. MANGO \Rightarrow NID longitudinal diffusion



Time over Threshold


Time over Threshold

- Measurement of the **<u>time length</u>** of the signal which is **<u>above a given threshold</u>**.
 - Not trivial when each PMT sees a different signal intensity and tracks can have very complicated paths
 - I do a **weighted average based on waveform's SNR** ⇒ Only correct for <u>timing</u> purposes

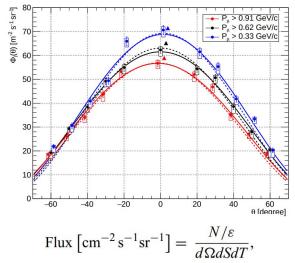
Time over Threshold

- Measurement of the **<u>time length</u>** of the signal which is **<u>above a given threshold</u>**.
 - Not trivial when each PMT sees a different signal intensity and tracks can have very complicated paths
 - I do a **weighted average based on waveform's SNR** ⇒ Only correct for <u>timing</u> purposes

Motivation & Math:

Possible results / analysis:

Motivation & Math:

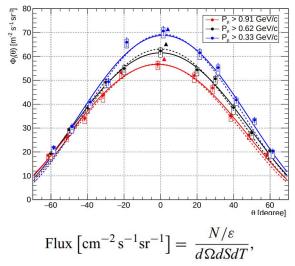

- This measurement presents a *clear dataset* with tracks with *well-defined orientation* and energy deposit (MIP)
 - We have a specific <u>range of possible angles</u> of entering LIME (given by geometry of LIME + scintillators)
 - PMT measures the <u>Time over Threshold</u>
 - Multiplied by v_{drift e-} gives the ∆z
 - Height of LIME (c1) is known (33 cm)
 - The tracks inclination (α) will be tan⁻¹ (Δz/c1)

Possible results / analysis:

- We can <u>compare</u> it with the geometrical accepted angles.
- We can **<u>calculate the flux</u>** and compare it with the **cosmic**

muons angle distribution at ground ($\propto \cos^2(\Theta)^*$)

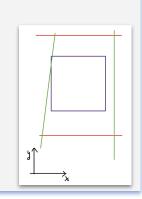
Motivation & Math:

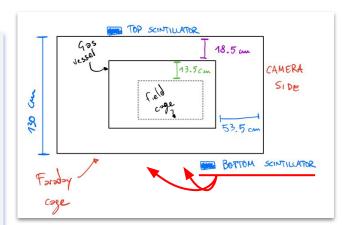

- This measurement presents a *clear dataset* with tracks with *well-defined orientation* and energy deposit (MIP)
 - We have a specific <u>range of possible angles</u> of entering LIME (given by geometry of LIME + scintillators)
 - PMT measures the <u>Time over Threshold</u>
 - Multiplied by v_{drift e-} gives the ∆z
 - Height of LIME (c1) is known (33 cm)
 - The tracks inclination (α) will be **tan**⁻¹ ($\Delta z/c1$)

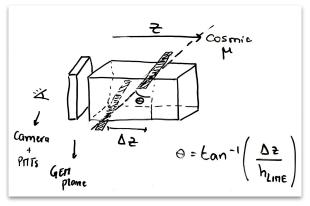
Possible results / analysis:

- We can <u>compare</u> it with the geometrical accepted angles.
- We can <u>calculate the flux</u> and compare it with the **cosmic**

muons angle distribution at ground ($\propto \cos^2(\Theta)^*$)



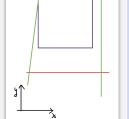

Gives us a measurement of PMT Reco / ToT efficiency First CYGNO 3D analysis (on a distribution basis)

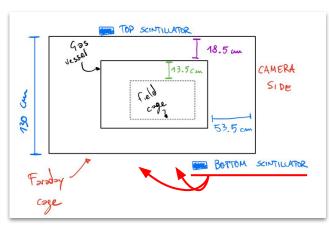

Setup:

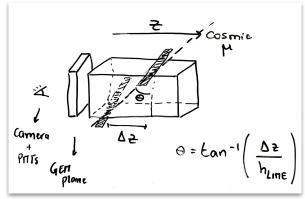
Dimensions:

Accuracy:

Setup:


- → Two scintillator bars were placed on top and bottom of LIME
- → LIME DAQ triggered by coincidence of two scintillators
 - 3 different scintillator position were used
 - By geometry, only certains angles are possible


Dimensions:


- → LIME:
 - Z: 50 cm ; Y: 33 cm ; X: 33 cm
- → Scintillator:
 - Z: ~5 cm ; Y: ~2 cm ; X: > 33 cm

Accuracy:

- This configuration actually allows for cosmics to enter and trigger **from the side** of LIME ⇒ Creates **long tails**
- **Random coincidences** from radioactivity or secondary particles are also possible

Analysis method:

Analysis method:

- Retrieve *Time over threshold* with weighted average
- Multiply with e-velocity in our gas to get *travelled Z*
 - \circ v_e = 5.471 cm/us @ 800 V/cm, from Giorgio's thesis.
- Calculate angle: *theta = tan⁻¹ ((ToT*1000) * v_e / 33cm)*

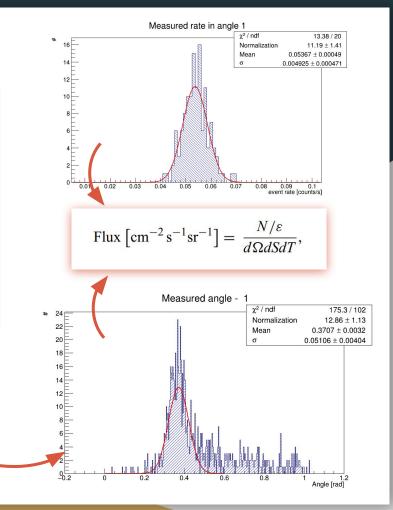
Analysis method:

- Retrieve *Time over threshold* with weighted average
- Multiply with e-velocity in our gas to get *travelled Z*
 - \circ v₂ = 5.471 cm/us @ 800 V/cm, from Giorgio's thesis.
- Calculate angle: *theta = tan⁻¹ ((ToT*1000) * v_{e-} / 33cm)*
- Compare obtained angle with geometrical accepted one
- Calculate *muon flux* using <u>interaction rate</u> and compare with a cos²(theta) distribution

Time over threshold distribution

12000

10000


14000 16000

Time over threshold [ns]

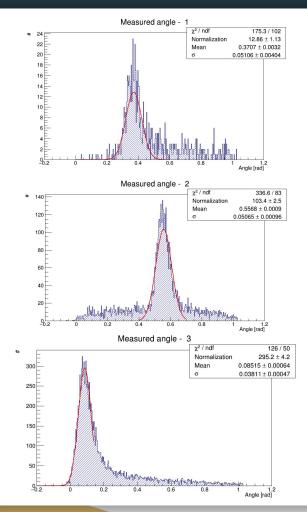
Analysis method:

- Retrieve *Time over threshold* with weighted average
- Multiply with e-velocity in our gas to get *travelled Z*
 - \circ v₂ = 5.471 cm/us @ 800 V/cm, from Giorgio's thesis.
- Calculate angle: *theta = tan⁻¹ ((ToT*1000) * v_p / 33cm)*
- Compare obtained angle with geometrical accepted one
- Calculate *muon flux* using <u>interaction rate</u> and compare with a cos²(theta) distribution

40 E

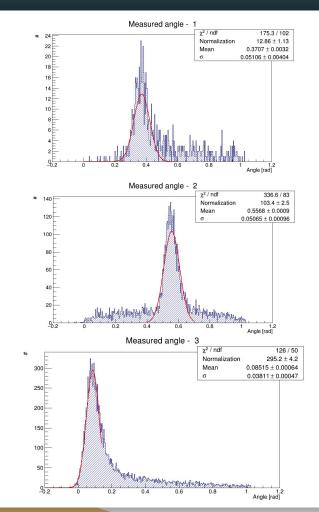
15

2000 4000

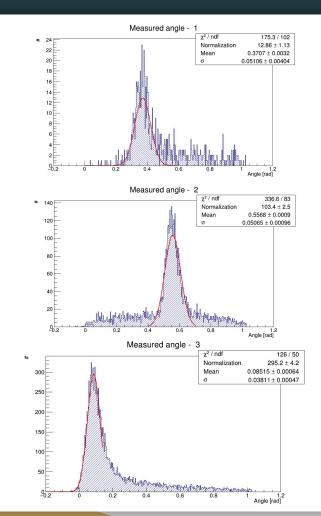

6000

8000

Z [cm]


Travelled Z distribution

Results - Angles comparison:


Results - Angles comparison:

- Measured angles:
 - 21.24 deg
 - 31.90 deg
 - **4.88 deg**

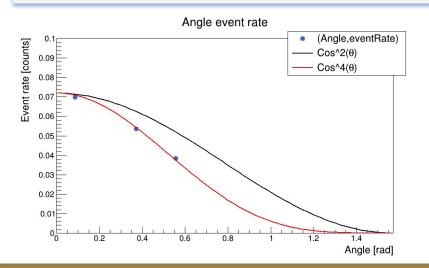
Results - Angles comparison:

- Measured angles:
 - 21.24 deg
 - **31.90 deg**
 - **4.88 deg**
- Geometry allowed angles (hand calculated):
 - o 20.27 24.04 deg
 - 28.64 31.93 deg
 - 0 deg 4.4 deg (Parallel case is special)
- Good agreement at first order
- Long tails visible as expected

Results - Flux measurement:

Results - Flux measurement:

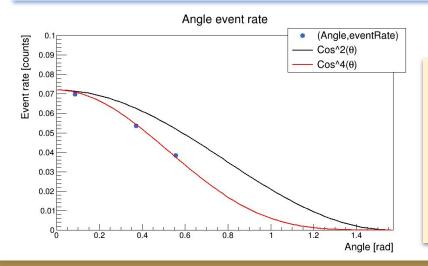
• Event rate retrieved from logbook


 \circ Only one trigger per event, easy calculation \Rightarrow

Dead-times don't need to be considered

Results - Flux measurement:

- Event rate retrieved from logbook
 - Only one trigger per event, easy calculation \Rightarrow


Dead-times don't need to be considered

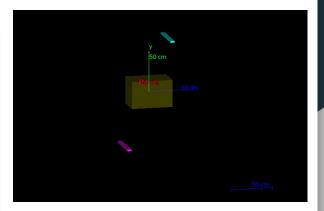
<u>Results - Flux measurement:</u>

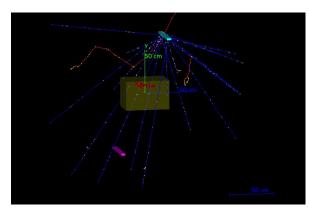
- Event rate retrieved from logbook
 - Only one trigger per event, easy calculation \Rightarrow

Dead-times don't need to be considered

	Data clearly fits a cos ⁴ instead of a cos ²						
	\downarrow						
what are we missing?							
	Let's revisit the theory						

Flux
$$\left[\operatorname{cm}^{-2} \operatorname{s}^{-1} \operatorname{sr}^{-1} \right] = \frac{N/\varepsilon}{d\Omega dS dT},$$

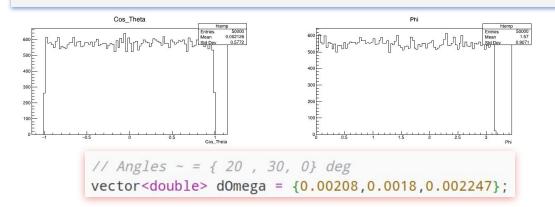

$$d\Omega = \sin heta\, d heta\, darphi, \qquad \Omega = \iint_S rac{\hat r \cdot \hat n}{r^2}\, dS \ = \iint_S \sin heta\, d heta\, darphi,$$

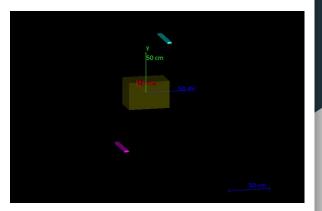

The <u>muon flux</u> takes into account the <u>acceptance / geometry</u> <u>factor</u> of the detectors ↓ Each of our configurations is different ⇒ To properly retrieve the cos² dependency of the flux, one needs to do this calculation.

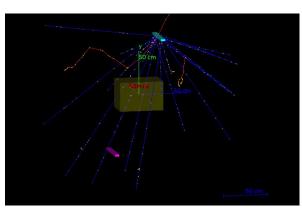
Simulation - Flux measurement:

Simulation - Flux measurement:

- Basic **<u>GEANT4 simulation</u>** was created (with some help from Samuele)
- Particle (2 GeV muon) shot randomly from top scintillator with flat direction distribution




CYGNO Collaboration Meeting - 4-6 December, 2023


50000 1.57 0,9071

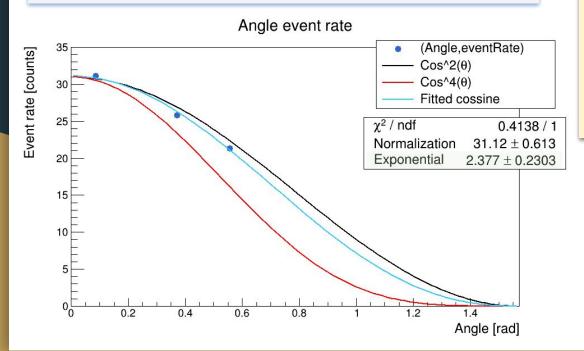
Simulation - Flux measurement:

- Basic **<u>GEANT4 simulation</u>** was created (with some help from Samuele)
- Particle (2 GeV muon) shot randomly from top scintillator with flat direction distribution
- **<u>Geometrical acceptance</u>** calculated from ratio between triple coincidence and total shot particles
 - **<u>Recalculated muon flux</u>**



Results - Flux measurement:

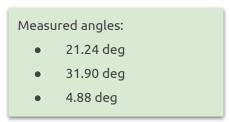
• Final result:

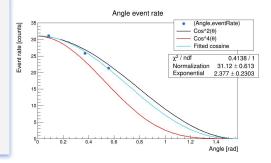

Results - Flux measurement:

• Final result:

Results - Flux measurement:

• Final result:

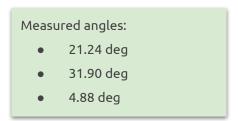

Doesn't fit a cos⁴ anymore ↓ More consistent with a cos² distribution as expected from literature (missing error bars) ↓ Still not the real muon flux since I miss the area (dA) normalization ⇒ With this we can compare with real data

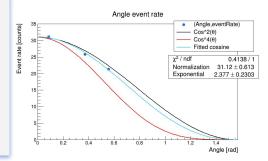

Authors	P_c (GV)	Alt. (m)	P_{μ} (GeV/c)	n value	$\begin{array}{c} \Phi_I(0^\circ) \\ (m^2 \ sr \ s)^{-1} \end{array}$
Pethuraj et al. [34]	17.6	160	≥ 0.11	$2.00{\pm}0.16$	70.07 ± 5.26
Sogarwal et al. [35]	16.38	SL	≥ 0.25	$2.10{\pm}0.25$	66.70 ± 1.54
S. Pal et al. [36]	16	SL	≥ 0.28	$2.15{\pm}0.01$	62.17 ± 0.05
Bhattacharyya [37]	14	24	≥ 0.4	1.91 ± 0.1	-
			≥1.	$1.85{\pm}0.11$	-
Arneodo et al. [38]	14	SL	≥ 0.04	$1.91{\pm}0.18$	75.4 ± 1.4
Present data	9.6	38	<u>≥0.33</u>	$1.82 {\pm} 0.11$	68.77±1.94
			≥ 0.62	$1.72{\pm}0.10$	61.49±1.44
			≥ 0.91	$1.72{\pm}0.10$	56.66 ± 1.60
CRY [25]	9.6	SL	≥0.33	2.02	69.26
			≥ 0.62	1.95	63.02
			≥ 0.91	1.87	56.80
Riggi et al. [33]	8	3100	≥ 0.2	$1.83{\pm}0.13$	83.±8
Judge and Nash [39]	2.5	SL	≥ 0.7	1.96 ± 0.22	

Conclusions:

Geometry allowed angles (hand calculated):

- 20.27 24.04 deg
- 28.64 31.93 deg
- 0 deg 4.4 deg

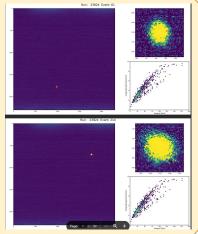



Conclusions:

- Results are at first order satisfactory.
 - **ToT is a reliable variable** and is already in the CYGNO **reconstruction**
- Interesting study on the CYGNO PMT analysis ⇒ Could eventually be used in a paper
- Some caveats:
 - A small correction on the ToT was applied since theta = 0 does *not* produce a ToT = 0 (Perhaps a **longitudinal** σ_0 for MIPs is necessary?)
 - There were some uncertainties regarding the dimensions of the scintillators
 - I will redo the simulations and *add more statistics*
- *If* you think this would be relevant, the same study could be performed with GIN, adding more angles, and measuring longitudinal diffusion with MIP.

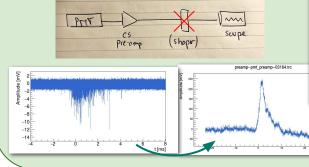
Geometry allowed angles (hand calculated):

- 20.27 24.04 deg
- 28.64 31.93 deg
- 0 deg 4.4 deg



Finalization of Tilted Cosmics study

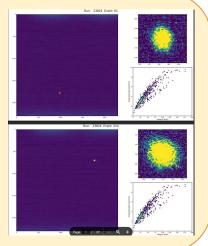
Finalization of Tilted Cosmics study


AmBe dataset analysis ↓ Attempts on PID and dE/dx analysis ↓ Already have the "most likely NR" data selected from Matteo

Finalization of Tilted Cosmics study

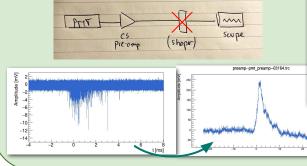
Negative Ion Drift ⇒ ⇒ <u>Longitudinal diffusion</u>

Stronger and <u>independent</u> confirmation of **below thermal** behaviour of NID



AmBe dataset analysis ↓ Attempts on PID and dE/dx analysis

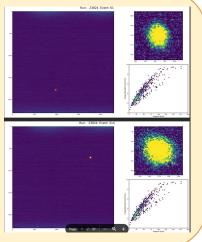
 \downarrow

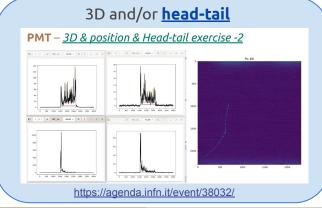

Already have the "most likely NR" data selected from Matteo

Finalization of Tilted Cosmics study

Negative Ion Drift ⇒ ⇒ <u>Longitudinal diffusion</u> ↓ Stronger and <u>independent</u> confirmation

of *below thermal* behaviour of NID





AmBe dataset analysis ↓ Attempts on PID and dE/dx analysis

 \downarrow

Already have the "most likely NR" data selected from Matteo

Thank you for

your attention!

The CYGNO Project counts with the collaboration of several international researchers coming from:

(And given the amount of portuguese speakers, we could also think of changing the name of the experiment to <u>Cisne</u>)