

Status and plans for the study of X-ray polarimetry

E. Baracchini¹, E. Costa², G. Dho³, F. Di Giambattista¹, A. Di Marco², D.Fiorina¹, D. Marques¹, G. Mazzitelli³, F. Muleri², A. Prajapati¹, P. Soffitta², S. Torelli¹ 1) GSSI & INFN 2) INAF/IAPS 3) LNF

04/12/2023

Davide Fiorina - GSSI & INFN

High Yield Polarimetry Experiment in X-rays

- HypeX Funded by PRIN2020
- Collaboration with INAF
- Goal
 - \rightarrow Use a CYGNO-like detector to measure the polarization of Xray from cosmic sources GSSI & LNF
 - → Use different readout methods (TimePix) to improve GDP (IXPE GEM currently on data taking) performances INAF/IAPS

Summary:

- IXPE
- Xray polarimetry & methods
- Directionality capability of CYGNO-like TPC
- Future plan

IXPE mission

First dedicated satellite to Xray polarimetry

- 3x Telescopes
- 3x Mirror Units (MUs) + 3x Detector Units (Dus)
- A Detectors Service Unit (DSU) with built-in redundancy
- 4 m focal length, deployable boom, and X-ray shield
- GPD is a single GEM detector operated in pure DME
 800mbar

Performance :

- Polarization sensitivity: MDP_{99%}<5.5% in 1 day for flux 10^{-10} ergs/cm²/s
- Energy range 2-8 keV
- Angular resolution: better than 30 arcsec, field of view larger than 9 arcmin
- UTC synchronization: better than 250 µs
- Energy resolution: better than 25%

Astronomical Sources and Physics sectors

Scientific goal	Sources	<1keV	1-10	> 10 keV
Acceleration phenomena	PWN	yes (but absorption)	yes	yes
	SNR	no	yes	yes
	Jet (Microquasars)	yes (but absorption)	yes	yes
	Jet (Blazars)	yes	yes	yes
Emission in strong magnetic fields	WD	yes (but absorption)	yes	difficult
	AMS	no	yes	yes
	X-ray pulsator	difficult	yes (no cyclotron ?)	yes
	Magnetar	yes (better)	yes	no
Scattering in aspherical geometries	Corona in XRB & AGNs	difficult	yes	yes (difficult)
	X-ray reflection nebulae	no	yes (long exposure)	yes
Fundamental Physics	QED (magnetar)	yes (better)	yes	no
	GR (BH)	no	yes	no
	QG (Blazars)	difficult	yes	yes
	Axions (Blazars, Clusters)	yes?	yes	difficult
		1 keV	10 keV	100 keV
		Diffraction on	Photoelectric effect	
		mutuayer minors		Compton scattering
	SOFFITTA XPE TEXAS 2015.pdf (cern.ch)			

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso

From a LIME Underground to a MANGO in space

04/12/2023

Photoelectric effect

04/12/2023

6

 y_{γ}

G

S

GRAN SASSO E INSTITUTE

Davide Fiorina - GSSI & INFN

Photoeletron directionality and Xray polarimetry

- **Doing X-ray Polarimetry means doing electron directionality!** (also, energy is essential)
- Reconstruct the photoelectron angular distribution to get some modulation in the azimuthal angle

$$R(\phi) = A + B\cos^2(\phi - \phi_0)$$

Modulation factor: response to 100% polarized radiation:

$$\mu = \frac{R_{\max} - R_{\min}}{R_{\max} + R_{\min}} = \frac{B}{B + 2A}$$

Minimum Detectable Polarization (MDP) with no background:

$$MDP = \frac{4.29}{\mu\sqrt{N}}$$
 (99%*CL*)

S

G

1

S I BRAN SASSO ENCE INSTITUTE

- Doing X-ray Polarimetry means doing electron directionality! (also, energy is essential)
- Reconstruct the photoelectron angular distribution to get some modulation in the **azimuthal angle**

$$R(\phi) = A + B\cos^2(\phi - \phi_0)$$

• Modulation factor: response to 100% polarized radiation:

$$u = \frac{R_{\max} - R_{\min}}{R_{\max} + R_{\min}} = \frac{B}{B + 2A}$$

• **Minimum Detectable Polarization** (MDP) with no background:

$$MDP = \frac{4.29}{\mu\sqrt{N}}$$
 (99%*CL*)

Reconstruction & Directionality

- To do X-ray polarimetry, you need to reconstruct the **impact point** of the Xray and its **direction**!
- Let's start with CYGNO simulation
- Samuele applied the IXPE algorithm for directionality to electrons simulated and digitized in LIME

• Algorithm adapted from X-ray polarimetry:

"Measurement of the position resolution of the Gas Pixel Detector" Nuclear Instruments and Methods in Physics Research Section A, Volume 700, 1 February 2013, Pages 99-105

- First part of the algorithm: searching for the beginning of the track with:
 - Skewness
 - Distance of pixels from barycenter (farthest pixels)
- Selection of a region with fixed number of points N_{pt}
- Second part of the algorithm aims to find the direction:
 - Track point intensity rescaled with the distance from the interaction point: $W(d_{ip}) = exp(-d_{ip}/w)$
 - Direction taken as the main axis of the rescaled track passing from the interaction Point
 - Orientation given following the light in the Pixels

• Two parameters of the algorithm: N_{pt} and w

Reconstruction & Directionality

Simulated and digitized Electron tracks in LIME range of 15-70 keV (Samuele's Thesis)

First test @ INAF

Spectrum of contained tracks from simulation

Simulation and measurement of electron tracks

- The detector was not operated in the appropriate condition (Gain saturation)
- However, there is quite a good agreement with the simulation
- PRELIMINARY!

Reconstructed impact point of all tracks

Future Plan

- **Collimated 90Sr source** (with a good working detector!)
- Polarized Xray source
 <u>Di Marco et al. Calibration.pdf (inaf.it)</u>
 - Source/crystal can be changed and determine the energy of the emitted Xrays (both Xray gun and source)
 - In crystals, Bragg diffraction ≈45°→ the direction of linearly polarized Xrays
 - We would need sources with higher energies → to be discussed with INAF colleagues
- Gas Studies (Ar, Ne, He with CF4 comparison)
 - Diffiuson measurement with different gases
 - Simulation & measurement
- Different Amplification Stages:
 - Minimize the diffusion and extend the energy range
 - MMGEM (THGEM with embedded mesh) Available
- Other approaches to directionality

BACKUP

04/12/2023

Davide Fiorina - GSSI & INFN

13

Photoelectric Effect - UNPOLARIZED Spherical coordinates

S

GRAN SASSO

G

R15 0.4-0.3-

0.2-

0.1-

0

-0.2

-0.3-

-0.4-

-0.5-

₽₄5 0.4-0.3-0.2-

0-

-0.2--0.3--0.4-

04/12/2023

14

Laboratori Nazionali del Gran Sas

 N^1

0.8-

0.4

0.2-

-0.2

-0.4-

-0.6-

-0.8-

 N^1

0.8-0.6-0.4-

0.2-0--0.2-

-0.4--0.6-

-0.8-

-1-+-

Y

0-

Angular distribution for 0keV

Angular distribution for 0keV

Photoelectric Effect – LINEARLY POLARIZED Spherical coordinates

fiorotto8/AngularProbabilityPhotoelectric (github.com)

0.3

Davide Fiorina - GSSI & INFN

Laboratori Nazionali del Gran Sas

Cosmic Xray Background

Xray Cosmic BackGround <u>Power</u> Flux measurement X-ray and gamma-ray limits on the primordial black hole abundance from Hawking radiation

X-ray and gamma-ray limits on the primordial black hole abundance from Hawking radiation - ScienceDirect

Fig. 1. Cosmic X-ray background spectrum, as measured by various experiments. Overimposed are the Ueda+14 model (blue dashed line), the fit to a double power-law (black dashed line) of Eq. (4), and the corrections to the latter due to two hypothetical monochromatic PBH distributions with different masses *M* and cosmological abundances $f = \Omega_{PBH}/\Omega_{DM}$.

 $\Phi_{\rm AGN} = \frac{{\rm d}N}{{\rm d}E\,{\rm d}t} = \frac{A}{(E/E_b)^{n_1} + (E/E_b)^{n_2}}\,. \tag{4}$

For instance, assuming zero contribution to the data from PBH evaporation, the best fit is: $E_b = 35.6966$ keV, A = 0.0642 keV⁻¹s⁻¹cm⁻²sr⁻¹, $n_1 = 1.4199$ and $n_2 = 2.8956$; see the black dashed line in Fig. 1.

- In "hard" X-rays, E = 3 300 keV, the emission is remarkably uniform across the sky, except for a narrow "ridge" of emission in the plane of the galaxy. (<u>qui</u>)
- Superimposition of many far point-like sources (AGNs) so uniform. Nearer to us the things are different so on the galactic plane the intensity is larger (no idea how much...)

- Every energy bin is multiplied by the sensitity data from <u>NIST XCOM: Element/Compound/Mixture</u>
 - Sensitity and CRAB flux evaluated with Eval with Tspline (very small difference with linear interpolation)

Total Detector Rate CRAB [photons s⁻¹ keV⁻¹)] vs Energy[keV]

Total Detector Rate XRCB [photons s⁻¹ keV⁻¹)] vs Energy[keV]

Cosmic Xray background rate: 2700 Hz Crab Nebula Rate: 70 Hz

Code and data available:

fiorotto8/RateCalc_CRAB-XRCB (github.com)

Christmas tree solution

Gas Attenuation factors and Sensitivity

He/CF4 60/40

Requirements for a CYGNO-like Polarimeter

- Polarimetry is also possible with Xrays not on-axis HERE
- Compton process is also polarization-dependent
- If the background is too large to use a 'slow' ORCA-like camera we may switch to <u>Phoebe: The single-photon</u> <u>TPX3CAM – YouTube</u> (Used by ARIADNE experiment)
 - Small area (256x256 pixels) but fast readout (no need of PMT in principle), probably noisy (image intensifier)
- Gas choice is a trade-off of many factors:
 - Quantum efficiency \rightarrow heavy elements
 - Modulation factor \rightarrow light elements (straight tracks)
- The K-edge of the chosen gas should be (much) lower than the minimum energy of interest
 - Otherwise, we got contaminated by the Auger electron, which is emitted isotropically
- For HypeX TPC, we foresee good directionality of the photoelectron from 15 keV up to fully contained tracks (He/CF4)
 - Potentially, we can work up to the Argon (K-shell \approx 3keV)
 - Larger efficiency with heavier gases (also to the background!)
 - Choice of gas (with fixed dimension) fixes the energy range