

Background simulations for CYGNO-04 detector

Giulia D'Imperio

19-20/12/22 CYGNO Collaboration Meeting, Roma

Signal and background events in dark matter search

Background sources

1) Cosmic rays

2) Environmental radioactivity

Mainly potassium (K) uranium (U) and thorium (Th) and their daughters

3

Background components in underground laboratory

- Internal radiogenic neutrons/gammas (origin: radioactivity of the materials in setup)
- External radiogenic neutrons/gammas (origin: radioactivity of rocks and concrete of the lab)
- External cosmogenic neutrons (origin: muon interactions)

Ambient gammas

- Gammas mostly from K, U chain and Th chain
- Spectrum measured by SABRE collaboration(*)
- used as input for CYGNO simulations

Without shield **O(10⁹) evts/yr** in the CYGNO detector → need shielding with **attenuation power 10⁻⁵-10⁻⁶**

Ambient neutrons

- Ambient neutrons from radioactivity in the rock
- Spectrum from CUORE MC
 - → measurements Belli/Arneodo (radiogenic,
 E<10 MeV) and Hime (cosmogenic E>10 MeV)

Radioactivity of materials

- natural radioactivity: U, Th and K
- radon
- cosmogenically activated isotopes
- → usually the most worrisome backgrounds are internal (externals can be shielded)

→ Careful evaluation of the material activities is important to predict the background

Simulation workflow

- 1. Interactions of ER/NR in the gas \rightarrow tracks (x,y,z,dE)
- 2. Calculate electron diffusion in CYGNO gas
- 3. Simulation of primary electrons + transport to the GEMS
- 4. Simulation of GEM multiplication with saturation effect
- 5. Simulation of light production

DIGITIZATION

G4/SRIM

Hits: ΔE , (x,y,z)

6. Simulation of the camera (geometry, sensor, noise)

detector simulation (digitization)

Geant4 (ER) / SRIM (NR)

Garfield

CYGNO-04 design

- 0.5 x 0.8 x 1 m³ sensitive volume (0.4 m³)
- He:CF₄ gas mixture
- Central cathode
 - 2 drift regions of 50 cm each
- 2 x triple-GEM stack
- 2 x 2 cameras on each side, framing 50 x 80 cm² area

CYGNO-04 shielding design

- 10 cm copper on all sides
- 1 m water on sides and top
- 1 m PE on the base

Geometry implemented in Geant4

• Github repository: https://github.com/CYGNUS-RD/CYGNO-MC/tree/cygno_04

Simulation of radioactivity from camera lenses (right)

Х

Expected rate from camera lenses

- ⁴⁰K events generated in camera lenses: 10⁶
- Activity: 11 Bq/pc → 4 lenses → 44 Bq
- Events releasing energy in the gas: 1213 (99 in the 0-20 keV range)
- Rate from ⁴⁰K = N/ Ngen * activity = **1.7 (0.14) x 10⁶ evts/yr**
 - → simulation to be done for all radioactive isotopes and all setup parts

Radioactivity measurements with HPGe by Laubenstein

```
Th-232:

Ra-228: (0.077 +- 0.009) Bq/pc

Th-228: (0.078 +- 0.006) Bq/pc

U-238:

Ra-226 (0.41 +- 0.02) Bq/pc

Pa-234m (0.9 +- 0.3) Bq/pc

U-235: (0.031 +- 0.008) Bq/pc

U-235: (11 +- 1) Bq/pc

K-40: (11 +- 1) Bq/pc

Cs-137: < 0.0057 Bq/pc

La-138: (0.52 +- 0.04) Bq/pc
```

<u>Note</u>: radioclean lenses made of fused silica or plastic could be 3-4 order of magnitude less radioactive

External gamma simulation

- Simulate gammas from a spherical surface containing the setup
- Energy distribution from gamma measurements at LNGS with Nal detector

Rate from external gammas

- Gammas generated from surface: 10⁷ events
- Flux at LNGS ~ 0.5 gamma/cm²/s
- Events releasing energy in the gas: 3395 (1546 in the 0-20 keV range)
- Rate from gammas (no shield) = N/ Ngen * flux * surf = 2.3 (1.0) x 10⁹ evts/yr

Average gamma flux attenuation of 1 m water + 10 cm Cu \rightarrow ~5 x 10⁻⁶

Next step: detector simulation

Github repository: https://github.com/CYGNUS-RD/digitization

see talk by F. Petrucci

Summary

- Lesson from LIME: internal background will be likely dominated by GEMs and cameras (see Flaminia's talk on Monday)
 - need to optimize materials for low background experiments
 - radioactivity screening or CYGNO-04 materials very important
 - full simulations for CYGNO-04 in progress
- External gamma background estimation ~10³-10⁴ events/year with shielding made of water (1 m) and copper (10 cm)
 - full simulations in progress
- Nuclear recoils from background
 - small background but "irreducible" \rightarrow identical to NR from DM
 - study fiducialization techniques with simulation and LIME data
- Validation of MC with LIME data is very important
 - full simulation+reconstruction chain: interactions (Geant/SRIM), detector, reconstruction

Extra slides

Simulation of external gammas

19

Energy [keV]

Summary of internal backgrounds (old calculations)

	CYGNO		снімотто*		
Summary Table	NR/yr 1-20 keV	ER/yr 1-20 keV	NR/yr 1-20 keV	ER/yr 1-20 keV	Reference
GEM (LNGS)	5.07E+03	5.09E+05	1.00E+03	1.01E+05	Laubenstein@LNGS
GEM (TREX)	4.27E+03	3.61E+05	8.44E+02	7.14E+04	T-REX GEM
AcrylicBox (LNGS)	6.07E+03	3.61E+05	1.56E+03	9.32E+04	Laubenstein@LNGS
AcrylicBox (SNO)	7.67E+01	1.17E+04	1.98E+01	3.02E+03	SNO acrylic
CameraBody	0.00E+00	4.46E+05	0.00E+00	8.81E+04	Laubenstein@LNGS
CameraLens (LNGS)	0.00E+00	1.07E+06	0.00E+00	2.12E+05	Laubenstein@LNGS
CameraLens (fused silica)	0.00E+00	6.68E+01	0.00E+00	1.32E+01	Haereus "Suprasil"
Cathode (Cu)	8.58E-01	3.63E+02	1.69E-01	7.18E+01	T-REX copper
Field Cage (Cu)	1.51E+00	2.00E+03	2.99E-01	3.96E+02	T-REX copper
Total (LNGS)	1.11E+04	2.39E+06	2.57E+03	4.94E+05	
Total (low rad)	4.35E+03	8.21E+05	8.64E+02	1.63E+05	

- NR for the low-rad option mostly come from GEM → could be reduced with fiducialization
- ER for the low-rad option mostly come from GEM and Camera body

* Rates for CHINOTTO are obtained scaling from CYGNO-1m³ numbers

Summary of internal backgrounds CYGNO-1m3 (old)

• ER rate [1-20] keV = 2.3x10⁶ cts/yr

• NR rate [1-20] keV = 1.1x10⁴ cts/yr

Radioactive chains

