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Entanglement Entropy

Divide the total system in two subsystems A and B

SA = −trAρA logρA

ρA = trB|Ψ⟩⟨Ψ| = reduced density matrix of A→ trace out B from the total
density matrix ρtot = |Ψ⟩⟨Ψ|

- If the total system is in a pure
state, SA is a good measure of
the entanglement

- If the total system is in a mixed
state, SA is counting not only the
entanglement, but also the initial
entropy of the system

Holographic thermal entropy from GBT 2 / 12



Holographic Entanglement Entropy

Ryu and Takayanagi (2006)

SA =
Area of m(A)

4GN

m(A) = d − dimensional static minimal

surface in AdSd+2 (“RT surface")

anchored on A
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Bit Threads
Freedman and Headrick (2017):

- How one should think about the minimal surface m(A)?
- Can we rewrite the HEE formula without involving m(A)?

They introduced a vector field V in the bulk:

∇µVµ = 0 , |V | ≤ C , Flow lines = Bit Threads

- Flux of V through a surface γ: ϕ(γ) =
∫
γ

√
hnµVµ

- They demonstrated: max
V
ϕ(A) = C min

m∼A
Area(m)

There exists a vector field V
whose flux through A equals the
area of m(A)
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Reformulation of the Ryu-Takayanagi formula

If we set C =
1

4GN

S(A) = max
V
ϕ(A)

→ Each flow line (bit thread) leaving the region A carries one bit of
information about the microstate of A

→ The minimal surface acts as a bottleneck limitating the number
of threads emanating from A

→ The minimal surface is unique, but there are infinite classes of
bit threads that maximizes the flux
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Sphere in S-AdSd+2 black hole

• Constant time slice of Schwarzschild AdSd+2 black hole:

ds2
|t=const =

1
z2

(
dr2 +

dz2

f (z)
+ r2dΩd−1

)
with f (z) = 1 −

(
z

zh

)d+1

• Minimal surface→ solution of a second order differential equation

z′′(r)
f (z) +

(d−1) z′(r)
(

z′ (r)2
f (z) +1

)
rf (z) +

d
(

z′ (r)2
f (z) +1

)
z(r) −

z′(r)2 ∂f (z)
∂z(r)

2f (z)2 = 0

No analytic solution known→ we find a numerical solution zm(rm)

• Flow lines of the vector field V = geodesics

z′(r) = ± 1
z

√
f (z) (C2 − z2)

The integration constant C is determined by imposing that geodesics intersect orthogonally

the RT surface at a point zm(rm)

Holographic thermal entropy from GBT 6 / 12



The two branches (ascending and descending) of each geodesic can be expressed as

r≷(z) = rm(zm) +
∫ z̃∗

zm
v√

f (v)
(
C2−v2

) dv ±
∫ z̃∗

z
v√

f (v)
(
C2−v2

) dv
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Three types of geodesics:

1) Green: two endpoints on the boundary (maximum height z̃∗ = C)
2) Grey: one endpoint on the boundary and one on the horizon (maximum height

z̃∗ = zh)
3) Magenta: one endpoint on the boundary and its reaches the horizon only for

(limiting case of the other two)
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Magnitude of the vector field V:

∣∣∣V≷∣∣∣ = (
z

zm

)d
√

C2−z2
m

√

C2−z2

(
rm
r≷

)d−1 (∂zm r<)
∣∣∣
z=zm

∂zm r≷
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The entanglement entropy SA is computed as the flux of bit threads through the region
A:

SA = ϕ(A) =
Ld

AdSΩd−1

4GN

∫ b−ϵ

0
(nzVz 1

zd )|z=0 rd−1dr =
Ld

AdSΩd−1

4GN

∫ b−ϵ

0
CA(r) rd−1dr
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Does the flux through the green
interval Aβ have a meaning? →
Yes!

If we rename as S̃A,th the flux of bit threads through the green interval

S̃A,th =
Ld

AdSΩd−1

4GN

∫ bβ
0

(nzVz 1
z

)|z=0 rd−1dr

We find, at least numerically, that the geodesic bit threads identify a subinterval Aβ
that contains the information regarding the thermal entropy

SA,th =
Ld

AdS

4GN
Vd

( b
zh

)d

where Vd =
πd/2

Γ(d/2 + 1)
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Thank you for the attention!
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