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Entanglement Entropy

Divide the total system in two subsystems A and B

Sa =—trapalogpa J

pa = trg|¥)(W| = reduced density matrix of A — trace out B from the total
density matrix pir = [W)(WV|

Separable State Entangled State L.
If the total system is in a pure

Ct"_“i ﬁ) (@) - state, S, is a good measure of

the entanglement
( A ” & ) ( . H : ) - If the total system is in a mixed

entanglement, but also the initial
entropy of the system
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Ryu and Takayanagi (2006)

Area of m(A) J
Sp=———

4Gy

m(A) = d — dimensional static minimal
surface in AdS,,, (“RT surface")
anchored on A

[l Minimal surface ya

] AdS boundary



Bit Threads

Freedman and Headrick (2017):
- How one should think about the minimal surface m(A)?

- Can we rewrite the HEE formula without involving m(A)?

They introduced a vector field V in the bulk:

V,vE =0, vi<cC, Flow lines = Bit Threads

- Flux of V through a surface y: =~ ¢(y) = || Vin, v

- They demonstrated: m‘glx PA)=C mig Area(m)
m~

There exists a vector field V
whose flux through A equals the

area of m(A)
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Reformulation of the Ryu-Takayanagi formula

1
If = —
we set C TeN

S(A) = m‘gx P(A)

— Each flow line (bit thread) leaving the region A carries one bit of
information about the microstate of A

— The minimal surface acts as a bottleneck limitating the number
of threads emanating from A

— The minimal surface is unique, but there are infinite classes of
bit threads that maximizes the flux
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Sphere in S-AdS,,, black hole

e Constant time slice of Schwarzschild AdS,,, black hole:

1 dz? d+1
ds|21=const (d 2 +]T +72d0, 1) with f(z) =1 - (z, )

e Minimal surface — solution of a second order differential equation

(r> 2?2 2
P v B v B O

) 7@ ST 2GR

No analytic solution known — we find a numerical solution z,,(r,,)

e Flow lines of the vector field V = geodesics
Z/(r) = 1 \[f(2) (C? - 22)

The integration constant C is determined by imposing that geodesics intersect orthogonally
the RT surface at a point z,,(ry,)
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The two branches (ascending and descending) of each geodesic can be expressed as

dvifz*

— Z K% v
72(2) = 1m(zm) + fz . —f’—(v)(CZ_vZ) , —f(v)(cz_,,z) do
z

Three types of geodesics:
1) Green: two endpoints on the boundary (maximum height 2, = C)
2) Grey: one endpoint on the boundary and one on the horizon (maximum height
Z, = zp)
3) Magenta: one endpoint on the boundary and its reaches the horizon only for
(limiting case of the other two)



Magnitude of the vector field V:

z
Iz

|V _ (L)d \lcz_zgn (Vﬁ)d_l (azm7’<) ez
= Zm VC2—z2 azmi’z
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The entanglement entropy S, is computed as the flux of bit threads through the region
A:
LagsQi1 (7

Ll/j\dSQd—l v 21 -1 -1
Sa= @A) = T4y, (n,V Z—d)lzzo dr = T4Cn Jo Ca(r) v dr

e
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Does the flux through the green
interval A; have a meaning? —
Yes!

0.6

r
bs 10 2 3

If we rename as §A,m the flux of bit threads through the green interval

- Ld Qd,] b
AdS B
Sam= “iGy t( Vz‘)lZ L My

We find, at least numerically, that the geodesic bit threads identify a subinterval Ag
that contains the information regarding the thermal entropy

71d/2

SA,th - m

Ld b\?
42’811,,( ) where V,; =

Holographic thermal entropy from GBT 10/12



) Saa/(Bevs)

S/ (Sva) Saa/ (Hew)
600

500|

300|
200|

100|




Thank you for the attention!
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