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Context

The presence of DM spikes around massive BHs would impact
the dynamics of inspiralling IMRIs and EMRIs, which would be
imprinted in the phase evolution of GWs emitted by the system

Gravitational waves (GWs) are a promising avenue for
constraining and perhaps even detecting Dark Matter (DM)

DM dephasing is a promising signature for future GW
observatories, detecting dephased signals and correctly
inferring their properties will require accurate waveforms. This
in turn requires accurate modelling of the dynamics of binaries
embedded in DM spikes.
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Context

We consider a BH with mass M2 orbiting a larger BH of mass M1

embedded in a DM spike with density

ρDM(r) = ρ6

(
r

r6

)−γsp (
1+

r

rt

)−α

where r6 = 10−6 pc is a reference radius; ρ6 speci�es the
normalization of the DM spike; and γsp is the inner density slope
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Dynamical friction

DF is an important physical phenomenon, with consequences
in both stellar dynamics and plasma physics.

Slowing-down of a test particle of mass M, (or charge q)
moving at vT in a background of �eld particles with mean
number density n and velocity distribution f (vF), due to the
cumulative e�ect of multiple 1/r2 interactions.
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Dynamical friction: the classical case

Chandrasekhar (1943) estimation of the DF in stellar dynamics is:

dvT

dt
= −4πG 2nm(M +m) log Λ

Ξ(vT)

v3T
vT,

where

Ξ(vT) ≡ 4π

∫
vT

0

f (vF)v
2

FdvF (1)

is the fractional velocity volume function and log Λ is the so-called
Coulomb logarithm of bmax/bmin. For M ≫ m

dvT

dt
= −4πG 2Mρ log Λ

Ξ(vT)

v3T
vT,

where µ = Mm/(M +m) is the reduced mass.
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Dynamical friction: Special relativistic case

Following the classical derivation and making use of relativistic
composition of velocities instead, one has (Chiari & Di Cintio
2023):

dvT
dt

= −4πG 2
(M +m)2

M
ργvT log Λ

∫
γvFVf (vF)(vT − vF)

V 4
d3vF

where

V ≡ V
(
1−vT ·vF/c2

)
= V

(
1−vTvF cosϕ/c

2
)
; V = ||vT−vF||.
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Dynamical friction: Special relativistic case

When considering a thermalized relativistic gas, a natural choice is
the Maxwell-Jüttner distribution

f (vF) =
γ5vFv

2

F

c3ΘK2(Θ−1)
exp

(
− γvF

Θ

)
. (2)
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Dynamical friction: Special relativistic case
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Expressions di�er signi�cantly around σ.
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Dynamical friction: Post-Newtonian treatment

Assuming relativistic velocities and using in lieu of 1/r2 the 1PN
term

a1PN = −G (M +m)

r2
r

r
+

G (M +m)

c2r2

{[
(4+ 2η)

G (M +m)

r
+

− (1+ 3η)V 2 +
3

2
η ṙ2

]
r

r
+ (4− 2η)ṙ V

}
.
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Dynamical friction: Post-Newtonian treatment

The dynamical friction accounting for both relativistic velocities
and 1PN corrections becomes

dvT∥

dt
= −4πG 2(M +m)ρ

log Λ

γvTvT

∫
f ′(wF)[

1+
4mMw2

F

(M+m)2c2

]
w3

F{
vT ·wF

γ2vT

[
1+

(9Mm +m2)w2

F

2(M +m)2c2

]
+

m2(vT ∧wF)
2

(M +m)2c2

}
d3wF,
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Dynamical friction: Post-Newtonian treatment

0

0.2

0.4

0.6

0.8

1

1.2

100 101 102 103 104 105

||
d

v
T
/d

t|
|

vT [km s-1]

Relativistic
Classical

100 101 102 103 104 105

vT [km s-1]

Pierfrancesco Di Cintio BH inspiral



Single particle dynamics

The motion of the secondary BH M2 under the e�ect of the central
potential of the primary ΦBH,1 and the discreteness e�ects due to
the DM density is given

d2r

dt2
= −∇ΦBH,1(r)− η

d r

dt
+ FW

where η is either due to baryons only (in MOND) or to baryons and
DM (in Newton) and the �uctuating force FW is a �uctuating force
per unit mass.

for M2 ∼ m: η;F ̸= 0

for m ≫ M2 η = 0 and F ̸= 0

for M2 ≫ m: η ̸= 0 and F = 0
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Numerical methods: Langevin equation

We assume two di�erent distributions of local random kicks. 3D
Gaussian and Holtsmark (1911) distribution (Chandrasekhar & von
Neumann 1942,1943):

H(F ) =
2

πF

∫ ∞

0

exp
[
−α(ξ/F )3/2

]
ξ sin(ξ)dξ; α =

4

15
(2πGm∗)

3/2n∗
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F

Fat tailed distribution. For large forces (small mean inter-particle
distance) H̃(F ) ∼ 2πn∗(Gm∗)

3/2F−5/2
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Numerical methods: Langevin equation

Stochastic ODEs, like Langevin equations, are not an easy
computational task. We adopt the robust quasi-symplectic
Mannella (2004) scheme:

x(t +∆t/2) = x(t) +
∆t

2
v(t)

v(t +∆t) = c2

[
c1v(t) + ∆t∇Φ(x ′) + d1F̃ (x

′)
]

x(t +∆t) = x(t +∆t/2) +
∆t

2
v(t +∆t).

where:

c1 = 1− η∆t

2
; c2 =

1

1+ η∆t/2
; d1 =

√
2ζη∆t.

For η; ζ = 0 becomes the standard second order leapfrog.

Pierfrancesco Di Cintio BH inspiral



Numerical methods: N−body simulations

One can compute the dynamics of M2 around M1 with in a
standard N-body code, where the interaction with N DM (macro)
particles is evaluated only with M1 and M2
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Numerical methods: N−body simulations
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Evolution of the mass density
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Evolution of the mass density
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Evolution of the mass density
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E�ect of the velocity anisotropy
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E�ect of the GW emission
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Summary and outlook

DM dynamical slightly enhances the orbital decay with respect
to GW emission only

The e�ciency of DF depends strongly on DM distribution
function

The nature of DM also possibly a�ects DF, relativistic
treatment on the way.
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