Vortical QGP fluid near critical point

Sushant Kumar Singh

Talk based on EPJC (2023) 83:585

Florence Theory Group Day

March 25, 2024

Structure of Matter

Quantum chromodynamics (QCD)

- Quantum chromodynamics is the theory of interactions between quarks mediated by gluons, somewhat similar to how electrons interact through photons.
- Gluons possess the "color" charge and interact among themselves making QCD rich and complex.
- For energy scales $\gg 1$ GeV, perturbative methods can be used.
- For scales ~ 1 GeV, the theory becomes non-perturbative. Lattice QCD is currently the only known way of solving QCD for such scales.
- Lattice QCD computations are limited to baryon chemical potential (μ_B) close to 0 due to numerical sign problem.
- Mapping the QCD phase diagram is theoretically challenging.

Conjectured phase diagram of QCD

QGP in laboratory

- To create QGP in laboratory : heat up the matter to temperatures $\sim 10^{12}$ K or compress it to densities $\sim 10^{15}$ $\rm g/cm^3$.
- Possible by smashing together heavy-ions like Gold (Au), Lead (Pb) at ultra relativistic energies.
- Two largest experimental facilities are Large Hadron Collider (LHC) with a circumference of about 27 km and Relativistic Heavy Ion Collider (RHIC) with a circumference of about 3.8 km.
- The maximum center-of-mass collision energy $(\sqrt{s_{NN}})$ at RHIC is 200 GeV per nucleon pair. Remember mass of proton is about 1 GeV.

QGP in laboratory

Locally equilibrated droplet of QGP expands and breaks down into a multitude of hadrons. The detectors collect information on number, energy and momentum distributions of final state hadrons.

$$
\sim 10^{-23}~\text{s}
$$

Image Source : MADAI collaboration, Hannah Petersen and Jonah Bernhard

Mapping the phase diagram through HICs

Observables for Locating the QCD Critical Point

- A critical point is characterized by diverging correlation length (*ξ* → ∞) indicating that fluctuations in the system occur on all length scales.
- Fluctuations of conserved quantities, such as baryon, electric charge and strangeness number must grow near critical point. Hence, measure fluctuations in net-proton $(N_p - N_p)$, net-charge $(N_a - N_{\bar{a}})$, and net-kaons $(N_K - N_{\bar{K}})$.
- Two strategies:
	- a) Energy scan, expect non-monotonic behavior : vary collision energy $(\sqrt{s_{NN}})$.
	- b) Rapidity scan, expect qualitative change : vary rapidity for the same $\sqrt{s_{NN}}$. Rapidity is defined as $y = \frac{1}{2} \log \left(\frac{E + p_z}{E - p_z} \right)$.

Dynamic critical phenomena

- What is the behavior of non-equilibrium systems near a critical point ?
- A few examples of dynamic universality classes are
	- a) Model A: non-conserved order parameter
	- b) Model B: conserved order parameter
	- c) Model C: non-conserved order parameter coupled to conserved slow variable with no mode coupling
	- d) Model H: non-conserved order parameter coupled to conserved slow variable with mode coupling
- The dynamical universality class of the QCD critical point is Model H. (PRD 70 (2004) 056001)
- In model H: $\zeta \sim \xi^{z-\alpha/\nu}$, $\eta \sim \xi^{x_\eta}$, $\tau \sim \xi^{z}$. (z ≈ 3, $x_n \approx 0.05$ for QCD)

A new indicator for the critical point ? Rapidity profile of the slope of spin polarization

Spinning into Focus

reaction plane $^{\rm 8}$ 6 out of plane $\bar{\bar{\mathcal{P}}}_\text{H}$ (%) $\overline{4}$ in plane Ω 10 $\sqrt{s_{NN}}$ (GeV)

arXiv:0910.4114 Nature 548, 62-65 (2017)

The spin polarization vector in the rest frame of a hyperon is

$$
\vec{S}^*(x, p) \propto \frac{\gamma}{T^2} \vec{v} \times \nabla T + \frac{1}{T} (\vec{\omega} - (\vec{\omega} \cdot \vec{v}) \vec{v}) + \frac{1}{T} \gamma \vec{A} \times \vec{v}
$$

F. Becattini and M. A. Lisa, Ann. Rev. Nucl. Part. Sci. 70 (2020) 395

Hydrodynamic description of global spin polarization

I. Karpenko and F. Becattini, Nuc. Phys. A 967 (2017) 764-767

Effect of critical point on thermal vorticity

• Thermal vorticity, $\omega_{\mu\nu} = \frac{1}{2} [\partial_{\nu} (\beta u_{\mu}) - \partial_{\mu} (\beta u_{\nu})]$, gets suppressed at late times when we are closer to the critical point.

SKS and J. Alam, EPJC (2023) 83:585

Hydrodynamic trajectories in phase diagram

Trajectories of fluid cells at $x = y = 0$ and different space-time rapidities, η_s , for collision energies, $\sqrt{s_{NN}} = 14.5$ and 62.4 GeV.

SKS and J. Alam, PRD 107, 074042 (2023)

$\bf{Comparison}$ with experimental data at $\sqrt{s_{NN}} = 200$ GeV

SKS and J. Alam, EPJC (2023) 83:585

Prediction near critical point

• A qualitative change in the behavior of rapidity profile observed near CP.

SKS and J. Alam, EPJC (2023) 83:585

• Other bulk observables like momentum spectra etc. are not much affected due to the CP.

Summary

- We study the effect of QCD critical point on vorticity.
- We observe a suppression in thermal vorticity and hence, spin polarization of Λ-hyperons, as the CP is approached.
- We propose the qualitative change in the rapidity distribution of spin polarization as an indicator for the critical point.
- Questions needed to be investigated:
	- a) Effect of critical fluctuations on hydrodynamics.
	- b) Dependence on the location of critical point and on the size of critical region.
	- c) Sensitivity towards initial condition.
	- d) Effect of resonance decays.

Thank You !!!