# QCD in Florence: the legacy of Stefano Catani

#### Dimitri Colferai<sup>1,2</sup>

<sup>1</sup>University of Florence, Italy

<sup>2</sup>INFN Florence, Italy

INFN

Florence theory group day

25.03.2024

## Fundamentals of QCD

- Stefano began his studies on QFT in Florence with Marcello Ciafaloni (supervisor)
- QCD was recognized as the right QFT of strong interactions
  - Asympt. freedom ⇒ Successful in inclusive hard processes
  - Very rich and difficult (strong, confinement, IR divergencies)
- Fundamental constituents not observable, hadrons are strongly interacting composite states
- in order to test QCD and to provide predictions one has to devise proper observables,
  - insensitive to NP dynamics
  - whose aspects can be controlled by perturbative calculations
  - free of IR divergences
- Stefano gave important contributions on both aspects:
  - to the definition of the so-called IR-safe observables
  - to precise PT calculations of many important processes



### Factorization and Resummation

Keywords of perturbative QCD (in particular in Florence)

- Factorization: some observable can be decomposed  $\sigma = \mathbf{f} \otimes \mathbf{h}$ 
  - non-perturbative but universal term f (PDFs)
  - perturbative process-dependent term *h* (hard cross sections)
- In the high-energy regime  $s\gg Q^2$  the PT series is affected by large  $\log(s/Q^2)$  so that  $\alpha_{\rm s}\log(s/Q^2)\sim 1$
- Resummation:
  - Compute leading log. terms  $[\alpha_s \log(s/Q^2)]^n$  to all orders
  - Sum all those terms (evolution equations for f and h)





## QCD coherence

- [M. Ciafaloni '87] discovered the phenomenon of QCD coherence: the double logarithmic contributions  $[\alpha_s \log Q^2 \log s]^n$  to high-energy scattering stem from gluon emissions with angular ordering
- [S. Catani, Fiorani, Marchesini '89] studied in more detail MC's work leading to the celebrated CCFM equation, which is one of the keystone of high-energy PT QCD
- It improves the PDFs at small-x ( $x = Q^2/s$ ) with modified branching kernels and form factors



$$\theta_1 < \theta_2 < \theta_3$$

$$\theta_1 < \theta_2' < \cdots$$



## High-energy factorization

- [S. Catani, M. Ciafaloni, F. Hautmann '93] proposed and proved a new factorization formula (high-energy factorization)  $\sigma = F \otimes H$  where F is the "transverse-momentum dependent" gluon density.
- Here the high-energy logs can be computed and resummed to all orders in the (N)LLA, thus paving the way to realistic calculations at high energies.
- ullet [G. Camici, M. Ciafaloni '98] resummed also the NL logs  $lpha_{
  m s}^n \log^{n-1} s$

### **Jets**

- Factorization and resummation are usually possible for inclusive processes, hadronization dynamics is not (so) important
- In many events partons leave their footprint in the form of jets
- The detailed structure of a jet is NP but the global structure of jets isn't it can provide much more information on QCD dynamics
- In order to be quantitative, a jet must be precisely defined
   [S. Catani, Y. Dokshitzer, B. Webber '93] proposed an algorithm for an
   IR-safe reconstruction of jets (kt-algorithm)
- Very practical both experimentally and theoretically
- In the last decade it is by far the most common algorithm used



## Two-loop structure of QCD

- Development of QCD naturally led to calculations at higher orders: QCD enters its precision era (1%)
- The presence of IR singularities poses conceptual and practical problems in the calculation of observables, whose difficulty increases with PT orders.
- [S. Catani -98] wrote a fundamental paper analysing the IR singularities of QCD in a generic two-loop calculation.
   Starting from his analysis, any NNLO calculation in QCD became possible.

The two-loop coefficient subamplitude  $\mathcal{M}_m^{(2)}$  has  $1/\epsilon^4, 1/\epsilon^3, 1/\epsilon^2$  and  $1/\epsilon$  poles. Because of the increased degree of singularities, it is not a priori guaranteed that all of them can be controlled by a *universal* factorization formula as in the one-loop case. The main result presented in this paper is that such a factorization formula does exist and can be written in the following form

$$|\mathcal{M}_{m}^{(2)}(\mu^{2};\{p\})\rangle_{RS} = \mathbf{I}^{(1)}(\epsilon, \mu^{2};\{p\}) |\mathcal{M}_{n}^{(1)}(\mu^{2};\{p\})\rangle_{RS} + \mathbf{I}_{RS}^{(2)}(\epsilon, \mu^{2};\{p\}) |\mathcal{M}_{n}^{(0)}(\mu^{2};\{p\})\rangle_{RS} + |\mathcal{M}_{m}^{(2)fin}(\mu^{2};\{p\})\rangle_{RS} . (18)$$



### Transverse momentum resummation

- [S. Catani, M. Grazzini et al. '02] introduced transverse momentum resummation of heavy particles (heavy quarks, EW bosons, Higgs, ...) produced at hadron colliders
- Perturbatively the cross section is more and more divergent when  $q_T \rightarrow 0$ , due to soft gluon emissions
- For  $q_T \to 0$  they were able to show exponentiation in a vanishingly small cross section
- ullet if  $0 < q_T \ll m_H$  resummation has been performed at NNLO





### Soft currents

My work with Stefano: soft theorems Given a generic QCD amplitude, if some external momenta  $q_1, \dots, q_n$  are much softer than the others  $p_1, \dots, p_k$  (hard momenta), the amplitude factorizes:

$$|M_{k+n}(p,q)\rangle = \hat{J}_k(p,q) |M_k(p)\rangle$$

- 1 soft gluon [Bassetto, Ciafaloni, Marchesini '83]
- 2 soft gluons: [Catani, Grazzini '98]
- 1 soft gluon at 1-loop: [Catani, Grazzini '00]
- 3 soft gluons: [Catani, DC, Torrini '20]
- soft  $g q \bar{q}$ : [Catani, Cieri, DC, Coradeschi '23]







### Conclusions

- This was just a short and non-exhaustive list of Stefano's contributions to QCD
- Besides its scientific excellence. Stefano deserves esteem and respect for his personal qualities. having been a very friendly colleague, often available for discussions and help. modest with students and younger collaborators, many of which are researcher in Italy or abroad. I am sure they share my opinion and good memories