Florence Theory Group Day

Algebraic Area of Lattice Random Walks and Exclusion Statistics

Joint work with Stéphane Ouvry (UPSaclay) and Alexios Polychronakos (CCNY)

Li GAN GGI Boost Postdoctoral Fellow PhD at Université Paris-Saclay

March 25, 2024

Algebraic area: area swept by the closed walk, weighted by the winding number in each winding sector

Algebraic area: area swept by the closed walk, weighted by the winding number in each winding sector

Question: a formula for the number $C_n(A)$ of closed **n**-step square lattice walks that enclose an algebraic area A? (**n** is necessarily even, **n**=2n)

e.g. $C_2(0) = 4$, $C_4(0) = 28$, $C_4(1) = C_4(-1) = 4$

Algebraic area: area swept by the closed walk, weighted by the winding number in each winding sector

Question: a formula for the number $C_n(A)$ of closed **n**-step square lattice walks that enclose an algebraic area A? (**n** is necessarily even, **n**=2n)

e.g.
$$C_2(0) = 4$$
, $C_4(0) = 28$, $C_4(1) = C_4(-1) = 4$

$$(u + u^{-1} + v + v^{-1})^{\mathbf{n}} = \sum_{A} C_{\mathbf{n}}(A) Q^{A} + \dots$$
$$\mathbf{Tr} (v^{n} u^{m}) = \delta_{n,0} \delta_{m,0}$$
$$\Rightarrow \mathbf{Tr} (u + u^{-1} + v + v^{-1})^{\mathbf{n}} = \sum_{A} C_{\mathbf{n}}(A) Q^{A}$$
e.g., $\mathbf{Tr} (u + u^{-1} + v + v^{-1})^{4} = 28 + 4Q + 4Q^{-1}$

Algebraic area: area swept by the closed walk, weighted by the winding number in each winding sector

Question: a formula for the number $C_n(A)$ of closed **n**-step square lattice walks that enclose an algebraic area A? (**n** is necessarily even, **n**=2n)

e.g.
$$C_2(0) = 4$$
, $C_4(0) = 28$, $C_4(1) = C_4(-1) = 4$

 Generating function for algebraic area enumeration of n-step closed walks

$$(u + u^{-1} + v + v^{-1})^{\mathbf{n}} = \sum_{A} C_{\mathbf{n}}(A) Q^{A} + \dots$$
$$\mathbf{Tr} (v^{n} u^{m}) = \delta_{n,0} \delta_{m,0}$$
$$\Rightarrow \mathbf{Tr} (u + u^{-1} + v + v^{-1})^{\mathbf{n}} = \sum_{A} C_{\mathbf{n}}(A) Q^{A}$$
e.g.,
$$\mathbf{Tr} (u + u^{-1} + v + v^{-1})^{4} = 28 + 4Q + 4Q^{-1}$$

physics

Hofstadter model: a charged particle hopping on a square lattice in a perpendicular magnetic field

- Hamiltonian $H = u + u^{-1} + v + v^{-1}$ u, v are "magnetic translation operators"
- $Q = e^{2\pi i \phi/\phi_0}$; ϕ/ϕ_0 : magnetic flux per plaquette rational flux $\phi/\phi_0 = p/q$ with p, q coprime • $\sum_A C_n(A) Q^A = \mathbf{Tr} H^n$ aim: $\mathbf{Tr} H^n$

Rational flux, i.e., $Q = e^{2\pi i p/q}$ with p, q coprime $u = e^{i}$

 $u, v: q \times q$ "clock" and "shift" matrices

$$\underbrace{\mathbf{A}^{ik_x}}_{0} \begin{pmatrix} \mathbf{Q} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}^2 & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{Q}^3 & \cdots & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{Q}^{q-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{1} \end{pmatrix}, \quad v = e^{\mathbf{i}k_y} \begin{pmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

Quantum trace

$$\mathbf{Tr} H^{\mathbf{n}} = \frac{1}{q} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{dk_x}{2\pi} \frac{dk_y}{2\pi} \operatorname{tr} H^{\mathbf{n}}$$

Rational flux, i.e.,
$$Q = e^{2\pi i p/q}$$
 with p, q coprime $u = e^{ik_x} \begin{pmatrix} Q & 0 & 0 & \cdots & 0 & 0 \\ 0 & Q^2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & Q^3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & Q^{q-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$, $v = e^{ik_y} \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$

Quantum trace

$$u \to -uv, v \to v$$
 $\mathbf{Tr} H^{\mathbf{n}} = \frac{1}{q} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{dk_x}{2\pi} \frac{dk_y}{2\pi} \operatorname{tr} H^{\mathbf{n}}$
 $u \to -uv, v \to v$
 $\mathbf{Tr} H^{\mathbf{n}} = \frac{1}{q} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{dk_x}{2\pi} \frac{dk_y}{2\pi} \operatorname{tr} H^{\mathbf{n}}$
 $\mathbf{reduces to}$
 $\mathbf{Tr} H^{\mathbf{n}} = \frac{1}{q} \operatorname{tr} H_2^{\mathbf{n}}$
 $H_2 = \begin{pmatrix} 0 & f_1 & 0 & \cdots & 0 & 0 \\ g_1 & 0 & f_2 & \cdots & 0 & 0 \\ 0 & g_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & f_{q-1} \\ 0 & 0 & 0 & \cdots & g_{q-1} & 0 \end{pmatrix}$

 Aim: tr $H_2^{\mathbf{n}}$
 $f_k = 1 - Q^k, g_k = 1 - Q^{-k}$

$$\begin{aligned} \text{Rational flux, i.e., } Q &= e^{2\pi i \, p/q} \text{ with } p, q \text{ coprime } u = e^{ik_x} \begin{pmatrix} Q & 0 & 0 & \cdots & 0 & 0 \\ 0 & Q^2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & Q^3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & Q^{q-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}, v = e^{ik_y} \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix} \end{aligned}$$
$$\begin{aligned} \text{Quantum trace} \\ \text{Tr } H^{\mathbf{n}} &= \frac{1}{q} \int_0^{2\pi} \int_0^{2\pi} \frac{dk_x}{2\pi} \frac{dk_y}{2\pi} \operatorname{tr} H^{\mathbf{n}} \\ \text{reduces to} \end{aligned} \qquad \begin{aligned} \mathbf{U} &\to -uv, \ v \to v \\ k_x &= k_y = 0, \ \mathbf{n} < q \\ \text{reduces to} \end{aligned} \qquad \begin{aligned} \text{Usual trace} \\ \text{Tr } H^{\mathbf{n}} &= \frac{1}{q} \operatorname{tr} H^{\mathbf{n}}_{2} \end{aligned} \qquad H_2 = \begin{pmatrix} 0 & f_1 & 0 & \cdots & 0 & 0 \\ g_1 & 0 & f_2 & \cdots & 0 & 0 \\ 0 & g_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & f_{q-1} \\ 0 & 0 & 0 & \cdots & g_{q-1} & 0 \end{pmatrix} \end{aligned}$$

• Approach 1: secular determinant det $(I - z H_2)$ and its relation to *exclusion statistics*

$$\ln \det(I - zH_2) = \operatorname{tr} \ln(I - zH_2) = -\sum_{\mathbf{n}=1}^{\infty} \frac{z^{\mathbf{n}}}{\mathbf{n}} \operatorname{tr} H_2^{\mathbf{n}}$$

• Approach 2: direct computation (combinatorics of periodic Dyck paths)

$$\operatorname{tr} H_2^{\mathbf{n}} = \sum_{k_1=1}^q \sum_{k_2=1}^q \cdots \sum_{k_n=1}^q h_{k_1k_2} h_{k_2k_3} \cdots h_{k_nk_1} \qquad h_{ij}: \text{ matrix element of } H_2$$

$$\begin{array}{l} \text{Approach 1: via secular determinant det} \left(I - z \, H_2\right) \\ \text{Secular determinant } \det(I - z H_2) = \sum_{n=0}^{\lfloor q/2 \rfloor} (-1)^n Z_n z^{2n} \end{array} \qquad H_2 = \begin{pmatrix} 0 & f_1 & 0 & \cdots & 0 & 0 \\ g_1 & 0 & f_2 & \cdots & 0 & 0 \\ 0 & g_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & f_{q-1} \\ 0 & 0 & 0 & \cdots & g_{q-1} & 0 \end{pmatrix} \\ \text{Kreft coefficient } Z_n = \sum_{k_1=1}^{q-2n+1} \sum_{k_2=1}^{k_1} \cdots \sum_{k_n=1}^{k_{n-1}} s_{k_1+2n-2} s_{k_2+2n-4} \cdots s_{k_{n-1}+2} s_{k_n}, \quad s_k := g_k f_k = 4 \sin^2(k\pi p/q) \\ \text{[Kreft 1993]} \qquad \text{"+2 shifts"} \quad Z_0 = 1 \end{array}$$

e.g., for q = 7, $Z_3 = s_1 s_3 s_5 + s_1 s_3 s_6 + s_1 s_4 s_6 + s_2 s_4 s_6$

e.g., for
$$q = 7$$
, $Z_3 = s_1 s_3 s_5 + s_1 s_3 s_6 + s_1 s_4 s_6 + s_2 s_4 s_6$

Interpretation in statistical mechanics

 Z_n : partition function for n particles occupying q - 1 energy levels. These particles obey g = 2 *exclusion statistics* (no two particles can occupy adjacent quantum states) stronger exclusion than fermions!

Closed random walks on a square lattice **Exclusion statistics** with exclusion parameter g = 2

Use techniques from statistical mechanics to compute tr $H_2^{\mathbf{n}}$

Approach 1: via secular determinant det $(I - z H_2)$

$$\begin{array}{c} \text{Kreft coefficient} \quad Z_{n} = \sum_{k_{1}=1}^{q-2n+1} \sum_{k_{2}=1}^{k_{1}} \cdots \sum_{k_{n}=1}^{k_{n-1}} s_{k_{1}+2n-2} s_{k_{2}+2n-4} \cdots s_{k_{n-1}+2} s_{k_{n}}, \ s_{k} := g_{k} f_{k} = 4 \sin^{2}(k\pi p/q) \\ \text{Introduce cluster coefficient } b_{n} \text{ via } \log\left(\sum_{n=0}^{\lfloor q/2 \rfloor} Z_{n} x^{n}\right) = \sum_{n=1}^{\infty} b_{n} x^{n}, \ \text{tr } H_{2}^{n=2n} = 2n(-1)^{n+1} b_{n} \\ \text{tr } H_{2}^{n=2n} = 2n \sum_{\substack{l_{1},l_{2},\ldots,l_{j} \\ \text{composition of } n}} c_{2}(l_{1},l_{2},\ldots,l_{j}) \sum_{k=1}^{q-j} s_{k}^{l_{1}} s_{k+1}^{l_{2}} \cdots s_{k+j-1}^{l_{j}} \\ \text{The composition is an ordered partition.} \\ \text{e.g. four compositions of } n=3: (3), (2,1), (1,2), (1,1,1) \\ \text{Cn}(A) = 2n \sum_{\substack{l_{1},l_{2},\ldots,l_{j} \\ \text{composition of } n}} c_{2}(l_{1},l_{2},\ldots,l_{j}) \sum_{k_{3}=-l_{3}}^{l_{3}} \sum_{k_{4}=-l_{4}}^{l_{4}} \cdots \sum_{k_{j}=-l_{j}}^{l_{j}} \left(l_{1}+A+\sum_{i=3}^{l_{1}}(i-2)k_{i}\right) \left(l_{2}-A-\sum_{i=3}^{l_{2}}(i-1)k_{i}\right) \prod_{i=3}^{j} \binom{2l_{i}}{l_{i}+k_{i}} \\ \text{Ouvry, Wu 2019} \\ \text{det}(I-zH_{2}) \longrightarrow Z_{n} \qquad b_{n} \longrightarrow \text{tr } H_{2}^{n=2n} \quad \Rightarrow \text{ Generalize to the "+g shifts" (g-exclusion)} \end{array}$$

Closed random walks on various lattices

Honeycomb lattice walks

Hamiltonian H = U + V + W

honeycomb algebra $U^2 = V^2 = W^2 = I$, $(UVW)^2 = Q$

$$U = \begin{pmatrix} 0 & u \\ u^{-1} & 0 \end{pmatrix}, \quad V = \begin{pmatrix} 0 & v \\ v^{-1} & 0 \end{pmatrix}, \quad W = \begin{pmatrix} 0 & Q^{1/2}vu^{-1} \\ Q^{-1/2}uv^{-1} & 0 \end{pmatrix}$$

$$H = \begin{pmatrix} 0 & u + v + Q^{1/2}vu^{-1} \\ u^{-1} + v^{-1} + Q^{-1/2}uv^{-1} & 0 \end{pmatrix} = \begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix}, \quad H_{1,2} = AA^{\dagger} \qquad \text{set } e^{-ik_x} = -Q^{1/2} \\ k_y = 0, n < q$$

$$\det(I - zH) = \det(I - z^2H_{1,2}) = \sum_{n=0}^{q} (-1)^n Z_n z^{2n}$$
$$\det(I - z^2H_{1,2}) = Z_n \qquad b_n \qquad \mathbf{Tr} H^{n=2n} = \mathbf{Tr} H^n_{1,2} = \frac{1}{q} \operatorname{tr} H^n_{1,2}$$

Cubic lattice walks [Gan 2023]

How to define the algebraic area?

Algebraic area of 3D walks: sum of algebraic areas obtained from the walk's projection onto the xy, yz, zx-planes along the -z, -x, -y directions

Hamiltonian $H = U + V + W + U^{-1} + V^{-1} + W^{-1}$

3D Hofstadter model: a charged particle hopping on a cubic lattice coupled to a magnetic field $\mathbf{B} = (1,1,1)$

Commutation relations V U = Q U V, W V = Q V W, U W = Q W U

Cubic lattice walks

mixture of g=1, g=1, and g=2 with equal numbers of g=1 exclusion particles of two types

- Various lattice random walks, e.g., triangular lattice [<u>thesis</u>], hypercubic lattice [ongoing work]
- Classification of random walks based on the exclusion parameter g
- Connection to exactly solvable models

e.g., open Ising spin-1/2 chain: *free-fermionic* spectrum $\pm \epsilon_1 \pm \epsilon_2 \pm \cdots$ with ϵ_k obtained from g = 2 exclusion matrix H_2 [Baxter 1989], closed Ising chain [ongoing work]

• Potential applications in high energy physics?

- Various lattice random walks, e.g., triangular lattice [<u>thesis</u>], hypercubic lattice [ongoing work]
- Classification of random walks based on the exclusion parameter g
- Connection to exactly solvable models

e.g., open Ising spin-1/2 chain: *free-fermionic* spectrum $\pm \epsilon_1 \pm \epsilon_2 \pm \cdots$ with ϵ_k obtained from g = 2 exclusion matrix H_2 [Baxter 1989], closed Ising chain [ongoing work]

• Potential applications in high energy physics?

Thank You!