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Neural Networks

Neural networks (NNs) are models that can
efficiently approximate complex target
functions (Universal approximation

theorem??)

* Gjisanon-linearfunction (Tanh, Sigmoid,..)
* wjare the network (trainable) parameters
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Neural Networks: how to use them

Starting from a DATASET, that is, a set of examples input-target: x,y);i=1,..N
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Neural Networks: how to use them
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Neural Networks: how to use them

Trainthe network: find the parameters w;
that minimize a Loss function:

L <Yy —yil =X 19 — N(Xi;w)|
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Back to Neural Networks

Feed forward architecture:

The process consistsin applying linear transformations W
alternating with non-linear functions g,

X —>[W1(fi) - 91(W1(fi))J—>[W2 (gl(Wl (J?i))) - g, (W2 (91 (w, (fl.))))J e
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Layer 1 Layer 2
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Deep Learning in spectral domain

Giambagli et al. ! recently introduced the idea of training neural networks by acting in the

reciprocal space.
[/\\\/\
. . . Nature
The main ideais to tune the spectral parameters COMMUNICATIONS
instead of the weights of the matrix W.
ARTICLE
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Machine learning in spectral domain

Lorenzo Giambagh', Lorenzo Buffoni'?, Timoteo Carletti® *, Walter Nocentini' & Duccio Fanels!
with an identical numnber of free parameters, To recover a b rd
Spectral decomposition i e e Al e et

1L, Giambagli, L. Buffoni, T. Carletti, W. Nocentini, and D.Fanelli, Machine learning in spectral domain, Nat. Commun. 12, 1330 (2021).
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Deep Learning in spectral domain

Starting from the reciprocal space, a suitable set of eigenvectors ® can be chosen so as to obtainin the direct space a
matrix A that describes the linear transfer between two consecutive layers.
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Deep Learning in spectral domain
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Deep Learning in spectral domain

Starting from the reciprocal space, a suitable set of eigenvectors @ can be chosen so as to obtainin the direct space a
matrix A that describes the linear transfer between two consecutive layers.
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' Deep Learning in spectral domain

{Z w kD) = z Py ixE D — ATy 1)}

The eigenvalues
identify the way
information flows in
the linear transfer
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Input feature relevance

Explainability: what does the network is looking at to take its decisions?

A )
Input vector E !
N "

It is crucial to define methods to identify what features are relevant!
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AN =0

' Input feature relevance
{2 Wl(]k) ](k V= Z ¢1]AS xkb Ml)} —) wi; = A




Input feature relevance

AN =0

l

> WD =S gD - g | by ay
]

Not all the componentsofthe
input are importantto solve
the task
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Can eigenvalues be a proxy of the relevance?
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Input feature relevance
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A simple handmade dataset

Classification problem with two classes ¢ € [0,1]
Xy € R?Y

x; from independent Gaussian distributions (u; , a;°)

Some features are irrelevant: uf = u! and o= o}

For some components, the two classes are partially
separated. We define the relevance of the features as the
distance between the two distributions.
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A simple handmade dataset

 C(Classification problem with two classes ¢ € [0,1]

hd fO € RZO

-

« x; from independent Gaussian distributions (uf , o) S

* Some features are irrelevant: uf = ui and o= o}

* Forsome components, the two classes are partially
separated. We define the relevance of the features as the
distance between the two distributions.
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Finding correlations

* Classification problem with two classes ¢ € [0,1]
* 3?0 € RlO
« ifc(x) = 0:

Xon+1 = X2n
e ifc(x) = 1:

_ | =xy, with prob.p
X2n+17 1y, with prob.1 —p

distributions of the input features



Finding correlations

 Classification problem with two classes ¢ € [0,1] = l
® 3?0 € RlO
« ifc(x)= 0:

Xon+1 = X2n
e ifc(x) = 1:

_ | =xy, with prob.p
X2n+17 1y, with prob.1 —p
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' The MNIST dataset

A simple real dataset: images of zeros and ones — X, € R784

28



' The MNIST dataset

A simple real dataset: images of zeros and ones — X, € R784

600

500 A

300

200

100 A

0.0

f
0.2

T T
0.4 0.6

eigenvalues

T
0.8

T
1.0

700 A

Colormap: eigenvalues

29



' The MNIST dataset

A simple real dataset: images of zeros and ones — X, € R784

600

500 A

300

200

100 A

0.0

f
0.2

T T
0.4 0.6

eigenvalues

T
0.8

T
1.0

700 A

Colormap: eigenvalues

accuracy

1.00 4

0.95 ~

0.90 ~

o o

(s3] o

[=] L
1 1

0.75

0.70 ~

0.65 A

20

4|0 6|0
number of pixels used

80

T
100

30



' The MNIST dataset

A simple real dataset: images of zeros and ones — X, €
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' The MNIST dataset

By applying the mask to the inputimages, we see what the network is looking at:
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' The MNIST dataset

By applying the mask to the inputimages, we see what the network is looking at:
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To understand if the inputis a “one”, the network looks if this central part is active

34



Conclusion

* Spectral formulation gives us node-related parameters by which we can rank nodes
(pruning strategy)

* By applying this idea to first-layer nodes it is possible to identify relevant features:
we tested on two handmade dataset and one very simple real dataset.

* Real dataset are way more complicated, but this analysis is a first attempt to
connect post-training eigenvalues to input dimensions relevance

References:

* Less parameters same performance  (Chicchi, Lorenzo, et al. Physical Review E 104.5 (2021): 054312.)
* Spectral Pruning (Buffoni, Lorenzo, et al. Scientific reports 12.1 (2022): 1-9.)

* Recurrent Spectral Learning (Chicchi, Lorenzo, et al., Chaos, Solitons & Fractals 168 (2023): 113128.)
 Complex Recurrent Spectral Network (Chicchi, Lorenzo, et al., arXiv preprint arXiv:2312.07296 (2023).)

* How astudent becomes a teacher: learning and forgetting through Spectral methods (Giambagli, Lorenzo, et al, Neur/PS 2023)
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Thank you!



' Deep Learning in spectral domain
z wx kY = Zjlpij/\s' T — Ny
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Buffoni, Lorenzo, et al. "Spectral pruning of fully connected layers." Scientific Reports 12.1 (2022): 11201.

37



Deep Learning in spectral domain

k). (k-1 k-
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Every eigenvaluesis now associatedwithone
node : Pruning strategy
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