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Neural Networks

Neural networks (NNs) are  models that can 
efficiently approximate complex target 
functions (Universal approximation 
theorem1,2)

• 𝑮𝒍 is a non-linear function (Tanh, Sigmoid,..)
• wij are the network (trainable) parameters
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Starting from a DATA SET, that is, a set of examples input-target: (𝒙, ෝ𝒚)𝒊 𝒊 = 𝟏, . . 𝑵
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Neural Networks: how to use them

Train the network: find the parameters wij

that minimize a Loss function:

L  ∝ σ𝑖 ො𝑦𝑖 − 𝑦𝑖  = σ𝑖 | ො𝑦𝑖 − 𝑁( Ԧ𝑥𝑖; 𝑤)| 
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Feed forward architecture:

The process consists in applying linear transformations 𝑊𝑙

alternating with non-linear functions 𝑔𝑙

Ԧ𝑥𝑖  → 𝑊1 Ԧ𝑥𝑖 → 𝑔1 𝑊1 Ԧ𝑥𝑖 → 𝑊2 𝑔1 𝑊1 Ԧ𝑥𝑖 → 𝑔2 𝑊2 𝑔1 𝑊1 Ԧ𝑥𝑖 → ⋯

Back to Neural Networks

Layer 1 Layer 2 
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Giambagli et al. 1 recently introduced the idea of training neural networks by acting in the 
reciprocal space.

The main idea is to tune the spectral parameters 
instead of the weights of the matrix W.

𝑊 = ΦΛΦ−1

Spectral decomposition

1 L. Giambagli, L. Buffoni, T. Carletti, W. Nocentini, and D.Fanelli, Machine learning in spectral domain, Nat. Commun. 12, 1330 (2021).
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Deep Learning in spectral domain

The eigenvalues 
identify the way 

information flows in 
the linear transfer
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Input feature relevance

Explainability: what does the network is looking at to take its decisions?

𝑓1

𝑓2

𝑓3

𝑓4

𝑓5
.
.
.

yes

no

Input vector

It is crucial to define methods to identify what features are relevant!
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Input feature relevance
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Can eigenvalues be a proxy of the relevance?
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A simple handmade dataset

• Classification problem with two classes 𝑐 ∈ [0,1]

• Ԧ𝑥0 ∈ 𝑅20

• 𝑥𝑖 from independent Gaussian distributions (𝜇𝑖
𝑐 , 𝜎𝑖

𝑐)

• Some features are irrelevant: 𝜇𝑖
0 = 𝜇𝑖

1 and 𝜎𝑖
0= 𝜎𝑖

1

• For some components, the two classes are partially 
separated. We define the relevance of the features as the 
distance between the two distributions.  

distributions of the input features
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• Classification problem with two classes 𝑐 ∈ [0,1]

• Ԧ𝑥0 ∈ 𝑅10

• if 𝑐 Ԧ𝑥 =  0:

𝑥2𝑛+1 = 𝑥2𝑛

• if 𝑐 Ԧ𝑥 =  1:

 𝑥2𝑛+1= ቊ
−𝑥2𝑛 with prob. 𝑝

𝑥2𝑛 with prob. 1 − 𝑝

Finding correlations

26
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The MNIST dataset

A simple real dataset: images of zeros and ones           Ԧ𝑥0 ∈ 𝑅784

….
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The MNIST dataset

By applying the mask to the input images, we see what the network is looking at:
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The MNIST dataset

By applying the mask to the input images, we see what the network is looking at:

To understand if the input is a “one”, the network looks if this central part is active
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Conclusion

• Spectral formulation gives us node-related parameters by which we can rank nodes 
(pruning strategy)

• By applying this idea to first-layer nodes it is possible to identify relevant features: 
we tested on two handmade dataset and one very simple real dataset. 

• Real dataset are way more complicated, but this analysis is a first attempt to 
connect post-training eigenvalues to input dimensions relevance 
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