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Cold Dark Matter (DM as a pressure-less fluid of massive particles) works fine on Large and Cosmological
scales, but presents several puzzles on small scales (~kpc) ...
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Cold Dark Matter (DM as a pressure-less fluid of massive particles) works fine on Large and Cosmological
scales, but presents several puzzles on small scales (~kpc) ...
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CDM over predicts abundance
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The mismatch is known as the Core-Cusp problem



Different ways of addressing it (and other open puzzles!)

1) Understand better the role of the baryonic physics...

2) New properties of dark matter beyond CDM!



Different ways of addressing it (and other open puzzles!)

1) Understand better the role of the baryonic physics...

2) New properties of dark matter beyond CDM!

What if dark matter is in a Superfluid phase in halos?



What is a dark matter superfluid?

1) Condensate of self-interacting dark bosons in thermal equilibrium (T<T.): BEC + repulsive self-interactions

2) Phonons: low energy degree of freedom of the condensate are sound waves and not single particles:
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(In general, more complicated spectrum
E.g. rotons and maxons in He4)

3) Landau’s criterion for superfluidity: Subsonic perturber (no accelerations) may not perturb the superfluid!

v<C

S e Cannot excite phonons! Kinematically prohibited.



Why a dark matter superfiuid?

1 1
L= 2 ”¢a ¢ Qm ¢ 5 Im4 repulsive self-interactions

(CQ Ap > Ultralight scalar with

/ 1) If m< 1 eV, dark matter de Broglie volume is highly occupied in halos (degeneracy!)
/ 2) Efficient Self-interactions would thermalize dark matter (thermal equilibrium!)

Implications: Formation the superfluid phase. The ground state pressure sustains self-gravitating quasi homogeneous
configurations (non topological solitons)

/ \ Superfluid droplets @
NEW for m<10-5 eV, these can be kpc sized é
\ / (If we choose the self-coupling accordingly...)

Cold Dark Matter

Superfluid Dark Matter



To probe the superfluid behavior of dark matter,
we need to perturb the system with subsonic probes (v<cs)... _

— Hydrostatic Eq.
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Quasi-homogeneous in the centre,
possible solution to the core-cusp problem!




To probe the superfluid behavior of dark matter,

we need to perturb the system with subsonic probes (v<cs)... 1 dP — d(r) Hydrostatic Eq
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We specialize in extreme mass ratio inspirals (EMRIS): ratiomasses <10-> 10~ 10~ 10
(V. De Luca J. Khoury, 2023) 6 r/Th

(Fig from L. Berezhiani, G.C., V. De Luca, J. Khoury, 2023)



Can we probe dark matter superfluidity? YES, with Dynamical friction in dark matter spikes
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Can we probe dark matter superfluidity? YES, with Dynamical friction in dark matter spikes
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Can we probe dark matter superfluidity? YES, with Dynamical friction in dark matter spikes

Although there is only gravity that mediates interactions between baryons and DM
the overdensity depends on the [

1) Collisionless gas of massive particles (S. Chandrasekhar, 1943)

- ArG? M?
Fepm = > 510 C(vp, o)
B

2) Superfluid medium (L. Berezhiani, B. Elder, J. Khoury, 2019)

Fsppm = 0 v < Cg
Feppyv = 5 10g(6 \/U /CS —1—|—5 ) V > Cg
Up (B is a constant...)

Subsonic case substantially different than CDM!
(All examples are for the linear motion...)
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(L. Berezhiani, G.C., V. De Luca, J. Khoury, 2023)
Formalism for circular orbits from V. Desjacques., A. Nusser., R. Buhler, 2022
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1) Consider the linearized theory

p(r,t) = po (1 + a(r, 1))
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1) Consider the linearized theory

p(r,t) = po (1 + a(r, 1))
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o 2) Consider the following system of equations and solve for a(r,t):
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1) Consider the linearized theory

p(r,t) = po (1 + a(r, 1))

2) Consider the following system of equations and solve for a(r,t):

Euler’s equation + Poisson’s equation + Eguation of state
+ Continuity equation

3) Evaluate the force between the perturber and a(r,t).
(similar to evaluation of Retarded Potential, different mediator)
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1) Consider the linearized theory

p(r,t) = po (1 + a(r, 1))
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MR L 4) There is a general solution expressed as a sum over multipoles. For
“~~ s’ subsonic motion (M<1) and mostly sound waves perturbations (ro-1<mcs):
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1) Dynamical friction for sound waves perturbations (ro-1<mcs)

A) Zero radial friction for subsonic motion
B) Bumps: the perturber renters its own wake

C) Homogeneous medium

2) If we extend non homogeneous medium. Suppression of
Dynamical friction (compared to CDM) due to

C) Phonons
D) different density distribution of the spike

(L. Berezhiani, G.C., V. De Luca, J. Khoury, 2023)
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1) Dynamical friction when perturbations are
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2) Dynamical friction when perturbations are in

between sound waves and single particles (ro!=mcs)
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(L. Berezhiani, G.C., V. De Luca, J. Khoury, 2023)
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3) Comparison of GW-emission and Dynamical friction for EMRIs

A) GW-emission dominates at low radii both for CDM and SFDM.
B) Compared to CDM, the transition takes place at larger radii for SFDM
C) The transition can be probed by LISA for CDM. Not for SFDM!

Energy loss: DF vs GW-emission GW-dephasing
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Conclusions

Dark Matter superfluidity, in which sub-eV bosons with repulsive self-interactions
1) condense at typical galactic density, is a proposal that can ameliorate the open
questions that affect DM in galaxies.

Perturbers moving in the dark matter superfluid would experience a suppressed

2) dynamical friction than CDM. It can lead to different observational signatures!

This difference is particularly noticeable in dark matter spikes. It leads to a different
3) evolution of EMRIs. In contrast to CDM, the suppression of Dynamical friction gives a
GW dephasing which is not detectable with LISA.
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