

Florence Theory Group Day

GGI - 25/03/2024

università degli studi FIRENZE

VARYING HUBBLE CONSTANT

IN THE f(R) **MODIFIED GRAVITY**

Speaker: Dr. Tiziano Schiavone

- STANDARD ACDM COSMOLOGICAL MODEL AND THE HUBBLE CONSTANT TENSION
- □ REDSHIFT BINNED ANALYSIS OF THE SNE IA PANTHEON SAMPLE
- DECREASING TREND OF THE HUBBLE CONSTANT WITH REDSHIFT
- □ THEORETICAL INTERPRETATION IN THE JORDAN FRAME OF f(R) MODIFIED GRAVITY THEORIES

CONCLUSIONS

Slide 2 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

On the Hubble Constant Tension in the SNe Ia Pantheon Sample arXiv:2103.02117 **ApJ** 912, 150 (2021)

Authors: M. G. Dainotti, B. De Simone, TS, G. Montani, E. Rinaldi, G. Lambiase

On the Evolution of the Hubble Constant with the SNe la Pantheon Sample and Baryon Acoustic Oscillations: A Feasibility Study for GRB-Cosmology in 2030

Galaxies, 10, 24 (2022) arXiv:2201.09848

Authors: M. G. Dainotti, B. De Simone, TS, G. Montani, E. Rinaldi, G. Lambiase, M. Bogdan, S. Ugale

f(R) gravity in the Jordan Frame as a Paradigm for the Hubble Tension

arXiv:2211.16737 **MNRAS Letters**, 522, L72-L77 (2023)

Authors: TS, G. Montani, F. Bombacigno

6

RIKEN

Speaker SCHIAVONE TIZIANO

Slide 3 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

HUBBLE CONSTANT TENSION

Hubble constant definition

 $H_0 \equiv H(t = t_0) = H(z = 0)$

Speaker SCHIAVONE TIZIANO

High Precision Measures of H_0

CMB with Planck

Balkenhol et al. (2021), Planck 2018+SPT+ACT : 67.49 ± 0.53 Aghanim et al. (2020), Planck 2018: 67.27 ± 0.60 Aghanim et al. (2020), Planck 2018+CMB lensing: 67.36 ± 0.54

CMB without Planck

Dutcher et al. (2021), SPT: 68.8 ± 1.5 – Aiola et al. (2020), ACT: 67.9 ± 1.5 – Aiola et al. (2020), WMAP9+ACT: 67.6 ± 1.1 – Zhang, Huang (2019), WMAP9+BAO: 68.36_{_052}^{-053} –

No CMB, with BBN

Colas et al. (2020), BOSS DR12+BBN: 68.7±1.5 Philcox et al. (2020), P_l+BAO+BBN: 68.6±1.1 Ivanov et al. (2020), BOSS+BBN: 67.9±1.1 Alam et al. (2020), BOSS+eBOSS+BBN: 67.35±0.97

Cepheids – SNIa

Riess et al. (2020), R20: 73.2 ± 1.3 Breuval et al. (2020): 72.8 ± 2.7 Riess et al. (2019), R19: 74.0 ± 1.4 Camarena, Marra (2019): 75.4 ± 1.7 Burns et al. (2018): 73.2 ± 2.3 Follin, Knox (2017): 73.3 ± 1.7 Feeney, Mortlock, Dalmasso (2017): 73.2 ± 1.8 Riess et al. (2016), R16: 73.2 ± 1.7 Cardona, Kunz, Pettorino (2016): 73.8 ± 2.1 Freedman et al. (2012): 74.3 ± 2.1

TRGB – SNIa

 $\begin{array}{l} \mbox{Soltis, Casertano, Riess (2020): 72.1 \pm 2.0 \\ \mbox{Freedman et al. (2020): 69.6 \pm 1.9 \\ \mbox{Reid, Pesce, Riess (2019), SH0ES: 71.1 \pm 1.9 \\ \mbox{Freedman et al. (2019): 69.8 \pm 1.9 \\ \mbox{Yuan et al. (2019): 72.4 \pm 2.0 \\ \mbox{Jang, Lee (2017): 71.2 \pm 2.5 } \end{array}$

Masers

Pesce et al. (2020): 73.9 ± 3.0

Tully – Fisher Relation (TFR)

Kourkchi et al. (2020): 76.0 ± 2.6 Schombert, McGaugh, Lelli (2020): 75.1 ± 2.8

Surface Brightness Fluctuations

Blakeslee et al. (2021) IR-SBF w/ HST: 73.3 ± 2.5

Lensing related, mass model – dependent –

Yang, Birrer, Hu (2020): $H_0 = 73.65 \pm 256^{+2.95}$ Millon et al. (2020), TDCOSMO: 74.2 ± 1.6 Qi et al. (2020): 73.6 \pm 1.8 Liao et al. (2020): 72.8 \pm 1.9 Liao et al. (2019): 72.2 ± 2.1 Shajib et al. (2019), STRIDES: 74.2 \pm 2.7 Wong et al. (2019), HOLICOW 2019: 73.3 \pm 1.8 Birrer et al. (2018), HOLICOW 2018: 72.5 \pm 5.2 Bonvin et al. (2018), HOLICOW 2016: 71.9 \pm 5.2 Bonvin et al. (2016), HOLICOW 2016: 71.9 \pm 5.2 \pm

Optimistic average – Di Valentino (2021): 72.94 ± 0.75 – Ultra – conservative, no Cepheids, no lensing – Di Valentino (2021): 72.7 ± 1.1 –

DI VALENTINO et al. (2021), Class. Quant. Grav. 38, 153001

PANTHEON SAMPLE BINNED ANALYSIS

Hubble constant tension within the SNe la redshift range?

1048 spectroscopically confirmed SNe Ia from different surveys (PS1, SDSS, ESSENCE, SNLS, SCP, GOODS, CANDELS/CLASH) Scolnic et al. (2018), ApJ 859, 101 Repository: https://github.com/dscolnic/Pantheon

- > Equally populated subsamples of SNe Ia: 3, 4, 20, 40 redshift bins
- Statistical analysis for each redshift bin included statistical and systematic covariance matrices of Sne Ia χ² minimization, MCMC method
- > Fixed $\Omega_{m0} = 0.298$ for the Λ CDM model [Scolnic et al. (2018), ApJ 859, 101]
- > Extracting H_0 value for each bin
- > Uniform priors: $60 < H_0 < 80 \ km \ s^{-1} \ Mpc^{-1}$
- > Test to check the values of H_0 in different redshift bins

DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2021), ApJ 912, 150

0.01 < *z* < 2.26

Test: non-linear fit
$$H_0(z) = \frac{\widetilde{H}_0}{(1+z)^{\alpha}}$$
$$\alpha$$
: evolutionary parameter

$$\widetilde{H}_0 = H_0(z=0)$$

A NON-CONSTANT HUBBLE CONSTANT?

A NON-CONSTANT HUBBLE CONSTANT?

Speaker

Slide 7 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

SCHIAVONE TIZIANO

Slide 8 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

Slide 9 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

EXTRAPOLATED VALUES AT HIGH REDSHIFTS

∧CDM model

Bins	$H_0(z = 11.09)$	$H_0(z = 1100)$
	$({\rm km}~{\rm s}^{-1}~{\rm Mpc}^{-1})$	$({\rm km}~{\rm s}^{-1}~{\rm Mpc}^{-1})$
3	72.000 ± 0.805	69.219 ± 2.159
4	71.962 ± 1.049	69.271 ± 2.815
20	70.712 ± 1.851	66.386 ± 4.843
40	70.778 ± 1.609	65.830 ± 4.170

DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2021), ApJ 912, 150

$$H_0(z) = \frac{\widetilde{H}_0}{(1+z)^{\alpha}}$$

Consistent in 1 σ with the Planck measurement from the CMB, at the redshift of the last scattering surface z=1100

$$H_0^{[CMB]} = (67.36 \pm 0.54) \ km \ s^{-1} \ Mpc^{-1}$$

PLANCK COLLABORATION Planck 2018 result, VI: Cosmological parameters A&A 641, A6 (2020).

Slide 10 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

POSSIBLE EXPLANATIONS OF $H_0(z)$

<u>Astrophysical reasons or</u> trouble with the Pantheon Sample

New Physics

□ Hidden redshift evolution of an astrophysical parameter of

- SNe la (stretch, metallicity, ...)
- □ Astrophysical properties (host galaxies, selection effects)
- Biases not considered in the Pantheon Sample
- □ Systematics uncertainties of the sample

Late and/or early-time modification of gravity?

f(R) MODIFIED GRAVITY in the JORDAN FRAME

- > Extend GR to solve open problems in cosmology with extra degrees of freedom
- Geometrical modification of gravity theory
- > Avoiding ad hoc components in the Universe, e.g. dark energy
- > Generalized gravitational lagrangian $\mathcal{L}_g = f(R)$ R: Ricci scalar
- Dynamically equivalent action in the Jordan frame (JF), scalar-tensor theory
- > The extra degree of freedom of f(R) is replaced by a scalar field ϕ
- Non-minimal coupling between scalar field and metric

NOJIRI & ODINTSOV (2006), eConf C0602061, 06 SOTIRIOU & FARAONI (2010), Rev. Mod. Phys. 82, 451 Scalar field $\phi = f'(R)$

Speaker

SCHIAVONE TIZIANO

Potential

 $V(\phi) = R(\phi)\phi - f(R(\phi))$

f(R) MODIFIED GRAVITY in the JORDAN FRAME

Dynamically equivalent action to f(R) theories

Jordan Frame (JF)

$$S_g = \frac{1}{2\chi} \int_{\Omega} d^4x \sqrt{-g} \left[\phi R - V(\phi) \right]$$

For a <u>flat FLRW metric</u>:

Generalized Friedmann eq.

$$H^2 = \frac{\chi \rho}{3 \phi} - H \frac{\dot{\phi}}{\phi} + \frac{V(\phi)}{6 \phi}$$

Scalar field eq.

$$3\ddot{\phi} - 2V(\phi) + \phi\frac{dV}{d\phi} + 9H\dot{\phi} = \chi\rho$$

Scalar field $\phi = f'(R)$

Potential $V(\phi) = R(\phi)\phi - f(R(\phi))$

Generalized cosmic acc. eq.

$$\frac{\ddot{a}}{a} = -\frac{\chi \rho}{6 \phi} + \frac{V(\phi)}{6 \phi} + \frac{1}{6} \frac{dV}{d\phi} + H \frac{\dot{\phi}}{\phi}$$

 χ : Einstein constant

$$(\dots) = \partial_t(\dots)$$

Speaker Speaker SCHIAVONE TIZIANO

Slide 13 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

f(R) COSMOLOGY

- \blacktriangleright Extra degree of freedom in the parameterization, functional form of f(R)
- Mimic ACDM in the high-redshift regime, well-tested by the CMB
- Cosmic accelerated expansion with an effective cosmological constant \succ
- Phenomenology of ACDM as a limiting case

Hu-Sawicki

$$f(R) = R - m^2 \frac{c_1 \left(\frac{R}{m^2}\right)^n}{c_2 \left(\frac{R}{m^2}\right)^n + 1}$$
cromotore $n \ge 0$ $m^2 = \frac{\chi \rho_{m0}}{m^2}$

HU & SAWICKI (2007), Phys. Rev. D ,76, 064004

AMENDOLA & TSUJIKAWA (2010), Cambridge University Press

$$c_1, c_2$$
 parameters; $n > 0$ $m^2 \equiv \frac{\chi \rho_n}{3}$

Tsujikawa
$$f(R) = R - \mu R_c \tanh\left(\frac{|R|}{R_c}\right)$$

$$n, \mu, R_c > 0$$

STAROBINSKi (2007), Jetp Lett. 86, 157

TSUJIKAWA (2008), Phys. Rev. D, 77, 023507

Starobinski $f(R) = R - \mu R_c \left[1 - \left(1 + \frac{R^2}{R_c^2} \right)^{-n} \right]$

 R_{c}

Speaker SCHIAVONE TIZIANO

Slide 14 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

- > Decreasing trend of $H_0(z)$ from binned analysis of SNe Ia + BAOs [1,2]
- Failure of $w_0 w_a$ CDM model [3,4] and the f(R) Hu-Sawicki proposal to explain $H_0(z)$ [1,2]
- Need for a new f(R) model able to both mimic a dark energy component and provide a mechanism for an effective Hubble constant
- > Non-minimally coupled scalar field plays a crucial role
- > Goal: effective Hubble constant that evolves with z to match

 $H_0^{[CMB]} = (67.36 \pm 0.54) \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ and } H_0^{[loc]} = (73.04 \pm 1.04) \text{ km s}^{-1} \text{ Mpc}^{-1}$

[1] DAINOTTI, DE SIMONE, **SCHIAVONE**, et al. (2021), ApJ 912, 150

[2] DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2022), Galaxies 2022, 10, 24

[3] CHEVALLIER & POLARSKI (2001), Int. J. Mod. Phys. D 10, 213

Speaker

SCHIAVONE TIZIANO

[4] LINDER (2000), Phys. Rev. Lett. 90, 091301

Generalized Friedmann eq. in JF:

$$H^{2} = \frac{1}{\phi - (1+z)\frac{d\phi}{dz}}\frac{\chi}{3}\left[\rho + \frac{V(\phi)}{2\chi}\right]$$

Approximation: slight deviation from ΛCDM

$$V(\phi) \equiv 2\chi\rho_{\Lambda} + g(\phi)$$
$$g(\phi) \ll V(\phi)$$

 $\frac{d\phi}{d\phi}$

We obtain a form similar to flat ACDM but with an effective Hubble constant

SCHIAVONE, MONTANI, & BOMBACIGNO (2023), MNRAS Letters, 522, L72-L77

Solving the cosmological dynamics in the JF, we can reconstruct analytically the scalar field potential, then the f(R) model

Slide 16 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

Slide 17 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

Percentage variation of $\tilde{V} \sim 1.6\%$ Nearly flat region occurs for 0 < z < 0.3 $\tilde{V}(\phi) = \frac{V(\phi)}{m^2}$

SCHIAVONE, MONTANI, & BOMBACIGNO (2023),

MNRAS Letters, 522, L72-L77

Slide 18 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

$$f(R) \approx m^2 B_0 + B_1 R + B_2 \frac{R^2}{m^2}$$
 Approximated solution for $z \ll 1$:
 $f(R) -$ quadratic gravity Schlavone, MONTANI, & BOMBACIGNO (2023),
It can be shown that Λ CDM is recovered for $\alpha \to 0$ and $K \to 1$

Slide 19 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

SUMMARY

- Binned analysis of the SNe Ia Pantheon Sample (low redshifts)
- > Unexpected evolution and decreasing trend of $H_0(z)$ in different bins and for various cosmological models
- A running Hubble constant allows a new interpretation of the tension: it could be no longer a discrepancy between local probes and Planck data, but an intrinsic evolutionary behavior of $H_0(z)$ as viewed in a modified gravity scenario
- > New surveys in the future (Euclid, LSST, DESY, etc.) and other cosmological probes (Pantheon+, quasars, GRBs, etc.) to obtain better constraints on α
- Possible hints of new physics (modified gravity?)

Backup slides

Slide 21 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

LUMINOSITY DISTANCE d_L

1 + z

(Chevallier-Polarski-Linder)

LINDER (2000), Phys. Rev. Lett. 90, 091301

Slide 22 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

(Z')

DISTANCE MODULUS μ

From the underlying theoretical cosmological model:

PANTHEON SAMPLE ANALYSIS

1048 spectroscopically confirmed SNe Ia from different surveys (PS1, SDSS, ESSENCE, SNLS, SCP, GOODS, CANDELS/CLASH)

0.01 < z < 2.26

Slide 24 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

PANTHEON SAMPLE ANALYSIS

 $C = D_{stat} + C_{sys}$

Statistical matrix

(diagonal matrix, 1048x1048) Includes distance errors σ^2 for each SNe C_{sys} Systematic covariance matrix
(matrix, 1048x1048)Includes N systematic (S_k) sources
of errors

$$\sigma^{2} = \sigma_{N}^{2} + \sigma_{mass}^{2} + \sigma_{\mu-z}^{2} + \sigma_{lens}^{2} + \sigma_{int}^{2} + \sigma_{bias}^{2}$$
Photometric
error Peculiar
velocity and scatter
Mass-step redshift Lensing Bias
correction Correction

 $C_{ij,sys} = \sum_{k=1}^{N} \frac{\partial \mu_i}{\partial S_k} \frac{\partial \mu_j}{\partial S_k} \sigma_{S_k}^2$

 S_k : systematics $\rightarrow (m_B, x_1, c, m_B c, x_1 m_B, x_1 c)$ σ_{S_k} : systematic error

Slide 25 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

SCHIAVONE TIZIANO

PANTHEON SAMPLE BINNED ANALYSIS

Hubble constant tension within the SNe Ia redshift range?

0.01 < *z* < 2.26

- Equally populated subsamples of SNe Ia: 3, 4, 20, 40 redshift bins
- > Building submatrices C and subvector $\Delta \mu$, considering the redshift order of SNe
- > Statistical analysis for each redshift bin, χ^2 minimization, MCMC method
- > Uniform priors: $60 < H_0 < 80 \ km \ s^{-1} \ Mpc^{-1}$
- > Starting from the local value in the 1st bin: $H_0 = 73.5 \ km \ s^{-1} \ Mpc^{-1}$
- > Fixed $\Omega_{m0} = 0.298$ for the Λ CDM model
- > Fixed $\Omega_{m0} = 0.308$, $w_0 = -1.009$, $w_a = -0.129$ for the $w_0 w_a$ CDM model
- > Extracting H_0 value for each bin

Test: non-linear fit $H_0(z) = \frac{H_0}{(1+z)^{\alpha}}$ α : evolutionary parameter

 $\widetilde{H}_0 = H_0(z=0)$

Speaker Speaker SCHIAVONE TIZIANO

Slide 26 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

A NON-CONSTANT HUBBLE CONSTANT?

Slide 28 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

EXTRAPOLATED VALUES AT HIGH REDSHIFTS

	$w_0 w_a CDN$	w _a CDM model	
Bins	$H_0(z = 11.09)$	$H_0(z = 1100)$	
	$(km s^{-1} Mpc^{-1})$	$(km s^{-1} Mpc^{-1})$	
3	72.104 ± 0.766	69.516 ± 2.060	
4	71.975 ± 1.020	69.272 ± 2.737	
20	70.852 ± 1.937	66.804 ± 5.093	
40	70.887 ± 1.595	66.103 ± 4.148	

$$H_0(z) = \frac{\widetilde{H}_0}{(1+z)^{\alpha}}$$

Consistent in 1 σ with the Planck measurement from the CMB, at the redshift of the last scattering surface z=1100

$$H_0^{[PLANCK]} = (67.4 \pm 0.5) km \, s^{-1} \, Mpc^{-1}$$

DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2021), ApJ 912, 150

Slide 29 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

SNe + BAOs, BINNED ANALYSIS

- □ 3 redshift bins (≈ 350 SNe in each bin)
- Two free parameters in MCMC
 H₀ and Ω_{m0} for the ΛCDM model
 H₀ and w_a for the w₀w_aCDM model
- □ M = -19.35 such that locally (in the first bin) $H_0 = 70.0 \ km \ s^{-1} \ Mpc^{-1}$ (conventional value of the PS release)
- □ New probes included, BAOs

- □ Gaussian priors: $\mu(H_0) = 70.393 \ km \ s^{-1} \ Mpc^{-1}$ $\sigma(H_0) = 2 * 1.079 \ km \ s^{-1} \ Mpc^{-1}$ $\mu(\Omega_{m0}) = 0.298 \quad \sigma(\Omega_{m0}) = 2 * 0.022$ [measurements from arXiv:1710.00845 in 2 σ] $\mu(w_a) = -0.129$ $\sigma(w_a)$: 20 % deviation from its central value
- □ Fixed $w_0 = -0.905$ from arXiv:1710.00845

DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2022), Galaxies 2022, 10, 24

SNe + BAOs, BINNED ANALYSIS

Slide 31 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

GENERAL RELATIVITY

 $G_{\mu\nu} = \chi T_{\mu\nu}$

Dark energy \rightarrow modified source

f(R) MODIFIED GRAVITY

Geometrical modification of gravity theory

$\mathcal{L}_{EH} = R$ Einstein-Hilbert	Gravitational Lagrangian density	$\mathcal{L}_g = f(R)$ Extra degree of freedom
$S_{EH} = \frac{1}{2\chi} \int_{\Omega} d^4x \sqrt{-g} R$	Gravitational action	$S_g = \frac{1}{2\chi} \int_{\Omega} d^4x \sqrt{-g} f(R)$
$G_{\mu u} = \chi T_{\mu u}$	Gravitational field equations	$ \begin{aligned} f'(R) & R_{\mu\nu} - \frac{1}{2} f(R) g_{\mu\nu} + g_{\mu\nu} g^{\rho\sigma} \nabla_{\rho} \nabla_{\sigma} f'(R) \\ & - \nabla_{\mu} \nabla_{\nu} f'(R) = \chi T_{\mu\nu} \end{aligned} $
NOJIRI & ODINTSOV (2006), eConf C0602061, 06 SOTIRIOU & FARAONI (2010), Rev. Mod. Phys. 82, 451	: Ricci scalar $f'(R) \equiv$	$= \frac{df}{dR}$ ∇_{μ} : covariant derivative

Slide 32 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

f(R) MODIFIED THEORIES OF GRAVITY

Geometrical modification of gravity theory

 $\mathcal{L}_g = f(R) = \mathbf{R} + \mathbf{F}(R)$

Deviation from Einstein-Hilbert theory

Modified gravitational field equations

$$f'(R) R_{\mu\nu} - \frac{1}{2} f(R) g_{\mu\nu} + g_{\mu\nu} g^{\rho\sigma} \nabla_{\rho} \nabla_{\sigma} f'(R) - \nabla_{\mu} \nabla_{\nu} f'(R) = \chi T_{\mu\nu}$$

$$G_{\mu\nu} = \chi \left(T_{\mu\nu} + T_{\mu\nu}^{[F]} \right)$$

Explicit modification of Einstein-Hilbert equations No-Einsteinian geometrical contribution can be recast as an effective source

$$T_{\mu\nu}^{[F]} = -\frac{1}{\chi} \left[F'(R) R_{\mu\nu} - \frac{1}{2} F(R) g_{\mu\nu} + g_{\mu\nu} g^{\rho\sigma} \nabla_{\rho} \nabla_{\sigma} F'(R) - \nabla_{\mu} \nabla_{\nu} F'(R) \right]$$

Slide 33 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

f(R) HU-SAWICKI MODEL

Metric
$$f(R)$$
 formalism
 $n = 1$

$$f(R) = R - m^2 \frac{c_1 \frac{R}{m^2}}{c_2 \frac{R}{m^2} + 1}$$

$$V(\phi) = \frac{m^2}{c_2} \left[c_1 + 1 - \phi - 2\sqrt{c_1 (1 - \phi)} \right]$$

$$c_1, c_2 \text{ parameters}$$
 $m^2 \equiv \frac{\chi \rho_{m0}}{3} = H_0^2 \Omega_{m0}$

 \Box Cosmological constant for $R \gg m^2$

$$f(R) \approx R - 2\Lambda_{eff}$$
 with $\Lambda_{eff} = \frac{c_1}{c_2} m^2$

 \Box Constraining parameters, considering \land CDM as a limiting case with f(R) = R + F(R)

$$\frac{c_1}{c_2} \approx 6 \frac{\Omega_{0\Lambda}}{\Omega_{0m}} \quad \text{and} \quad F_R(z=0) = \left(\frac{dF}{dR}\right)_{z=0} = -\frac{c_1}{c_2^2} \left[3 \left(1 + 4\frac{\Omega_{0\Lambda}}{\Omega_{0m}}\right)\right]^{-2} \quad \text{with} \quad |F_R(z=0)| < 10^{-7}$$

Liu, T., Zhang, X., & Zhao, W., Phys. Lett. B, 777, 286 (2018)

Slide 34 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

LUMINOSITY DISTANCE IN f(R) GRAVITY

(arXiv: 0705.1158)

Dimensionless variables

$$y_H = \frac{H^2}{m^2} - (1+z)^3$$

$$y_R = \frac{R}{m^2} - 3 (1+z)^3$$

 $y_H(z)$ encodes information of a specific f(R) model. Modified field eqs. can be solved numerically in terms of y_H , y_R and their derivatives

 $d_L(z) = \frac{(1+z)}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_{m0} \left[(1+z')^3 + \gamma_H(z')\right]}}$

Initial conditions: z_i

$$y_H(z_i) = \frac{\Omega_{\Lambda 0}}{\Omega_{m0}}$$

$$y_R(z_i) = 12 \frac{\Omega_{\Lambda 0}}{\Omega_{m0}}$$

Speaker schiavone tiziano

Slide 35 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

BINNING APPROACH WITH f(R) HU-SAWICKI MODEL

$$f(R) \equiv R + F(R) = R - m^2 \frac{c_1 \frac{R}{m^2}}{c_2 \frac{R}{m^2} + 1}$$

 $y_H(z)$ encodes information of a specific f(R) model. Modified field eqs. can be solved numerically in terms of y_H , y_R and their derivatives

 $d_L(z) = \frac{(1+z)}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_{m0} \left[(1+z')^3 + \gamma_H(z')\right]}}$

$$\frac{c_1}{c_2} \approx 6 \frac{\Omega_{\Lambda 0}}{\Omega_{m0}} \text{ and } F_R(z=0) = \left(\frac{dF}{dR}\right)_{z=0} = -\frac{c_1}{c_2^2} \left[3 \left(1 + 4\frac{\Omega_{\Lambda 0}}{\Omega_{m0}}\right)\right]^{-2} \text{ with } |F_R(z=0)| < 10^{-7}$$

Slide 36 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

BINNING APPROACH WITH f(R) HU-SAWICKI MODEL

Figure 6. The Hubble constant versus redshift plots for the three bins of SNe Ia only, considering the Hu–Sawicki model. **Upper left panel.** The condition of $F_{R0} = -10^{-7}$ is applied to the case of SNe only, with the different values of $\Omega_{0m} = 0.301, 0.303, 0.305$. **Upper right panel.** The same of the upper left, but with the contribution of BAOs. **Lower left panel.** The SNe only case with the $F_{R0} = -10^{-4}$ condition, considering the different values of $\Omega_{0m} = 0.301, 0.303, 0.305$. **Lower right panel.** The same as the lower left, but with the contribution of BAOs. The orange color refers to $\Omega_{0m} = 0.301$, the red to $\Omega_{0m} = 0.303$, the magenta to $\Omega_{0m} = 0.305$, and the blue to $\Omega_{0m} = 0.298$.

DAINOTTI, DE SIMONE, SCHIAVONE, et al. (2022),

Galaxies 2022, 10, 24

Slide 37 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

Slide 38 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity

The low-redshift f(R) profile

For $z \ll 1$:

R

 $\phi(z) \approx K(1+2\alpha z) + O(z^3)$

$$\tilde{V}(\phi) \approx \tilde{V}(K) + A_1 (\phi - K) + A_2 (\phi - K)^2 + O[(\phi - K)^3]$$

Relations in the Jordan frame

$$=\frac{dV}{d\phi} \qquad V(\phi) = R(\phi)\phi - f(R(\phi))$$

 $f(R) \approx m^2 B_0 + B_1 R + B_2 \frac{R^2}{m^2}$

 A_i and B_i are algebraically related to the values of α , Ω_{m0} and K

where the dimensionless constant

Approximated solution for $z \ll 1$: f(R) – quadratic gravity

It can be shown that Λ CDM is recovered for $\alpha \rightarrow 0$ and $K \rightarrow 1$

SCHIAVONE, MONTANI, & BOMBACIGNO (2023),

MNRAS Letters, 522, L72-L77

Slide 39 Florence Theory Group Day 25/03/2024 - Varying Hubble constant in the f(R) modified gravity