Theory of matter density fluctuations on cosmological scales

Marko Simonović

Cosmic Microwave Background (CMB)

Spectroscopic galaxy surveys

Spectroscopic galaxy surveys

Theory of matter density fluctuations

CMB: linear perturbation theory, since $\Delta T/T \sim 10^{-5}$ \bm{x} perturbation ⇢¯ (9)

Density field of galaxies much more complicated
(nonlinear we do not understand all relevant phenomena (nonlinear, we do not understand all relevant phenomena, mixing of scales…) diameters in the contract of t

Astrophysical uncertainties at least ~10%, we need ~1% precision ancertainties at least ~1

No all scales at once, but on large scales fluctuations are small

$$
\sigma_R^2 \sim \frac{1}{2\pi^2} \int_0^{1/R} k^2 dk \ P_{\text{lin}}(k) \sim 1 \qquad \text{for} \quad R \sim \text{few Mpc} \quad \text{at low redshifts}
$$

The horizon scale $H_0^{-1} \sim 10^4 \text{ Mpc}$

Theory of matter density fluctuations

Effective field theory of large-scale structure, valid when $\sigma_R^2 \lesssim 1$

Large distance dof: $\delta_g \equiv (n_g(x) - \bar{n}_g)/\bar{n}_g$

EoM are fluid-like, including gravity

Symmetries, Equivalence Principle

Expansion parameters: δ_g , ∂/k_{NL}

All "UV" dependence is in a handful of free parameters

On scales larger than $1/k_{\rm NI}$ this is the universal description of galaxy clustering

Theory of matter density fluctuations

An example: dark matter only

$$
\partial_{\tau}\delta + \nabla[(1+\delta)\boldsymbol{v}] = 0
$$

$$
\partial_{\tau}\boldsymbol{v} + \mathcal{H}\boldsymbol{v} + \nabla\Phi + \boldsymbol{v}\cdot\nabla\boldsymbol{v} = \boxed{-c_s^2\nabla\delta + \cdots}
$$

$$
\nabla^2\Phi = \frac{3}{2}\mathcal{H}^2\Omega_m\delta
$$

(higher order in δ_g , ∂ / k_{NL})

$$
\langle \delta_{\mathbf{k}} \delta_{-\mathbf{k}} \rangle = \langle \delta_{\mathbf{k}}^{(1)} \delta_{-\mathbf{k}}^{(1)} \rangle + \langle \delta_{\mathbf{k}}^{(2)} \delta_{-\mathbf{k}}^{(2)} \rangle + \langle \delta_{\mathbf{k}}^{(1)} \delta_{-\mathbf{k}}^{(3)} \rangle + \langle \delta_{\mathbf{k}}^{(3)} \delta_{-\mathbf{k}}^{(1)} \rangle + \cdots
$$

Applications to current data

Applications to current data

error methodology of Ref. [66], with a joint sample covariance used to unite the two approaches. The 'FS' dataset (equivalent to the full-shape analysis of Sec. 2.3) was presented in Ref. [52] and 'Planck Large number of extensions of LCDM explored for the first using FS analysis four BOSS DR12 data chunks, which are displayed separately in Fig. 6. *H*⁰ is quoted in km s¹Mpc¹

(neutrino masses, spatial curvature, extra relativistic dof, ultra-light axion-like particles, light but massive relics, early dark energy, primordial non-Gaussianities…)

Outlook for the near future

- Theory: Burst of activity involving more precise calculations, new observables, application of EFTofLSS to new models, improving codes etc.
- Data: New analysis techniques, improved estimators, simplified pipelines etc.

New observations by DESI and Euclid will increase the size of the observed volume by a factor of ~10 in the next couple of years!

LCDM: 2-5x improvement New physics: ~10x improvement

Conclusions

New LSS observations this decade are a large opportunity

EFTofLSS proved to be very useful and applicable framework

There are many things to explore at the intersection of cosmology and particle physics

> New physics from galaxy clustering at GGI (a 6 week workshop in 2025)