

EuPRAXIA@SPARC_LAB Start to end Simulations

C. Vaccarezza on behalf of WA1- Beam Physics & collaboration team

- June 2023, where we were:
 - Reference Working point
 - First results on jitter analysis at the Linac exit
 - Recommendations from TDR-RC report Jun 2023
- Computing Resources update
- Jitter studies including acceleration in plasma
- Alternative solution for comb beam shaping
- Conclusions and To-do list

June 2023: first results on jitter analysis for the Linac

A. Giribono

MACHINE SENSITIVITY STUDIES – Results at Plasma Injection

- The analysis shows in the worst-case scenario a deteriorating of the emittance and of the peak current of maximum 10% (still in specification)
- > The most critical parameter is the witness-driver delay
- Hints for the future:
 - Investigate lower RF phase jitter (down to 15 fs)
 - Heighten faster the beam energy to frozen the beam shape
 - > X-band cavity right after the RF gun

	Witness		Driver		
	Without errors	With errors	Without errors	With errors	
Energy	537.44	537.45 ± 0.30	539.55	539.57 ± 0.33	MeV
Energy spread	0.71	0.7102 ± 0.007	0.92	0.92 ± 0.026	‰
Bunch length	5.460	5.927 ± 0.21	61.71	61.81 ± 0.73	μm
I _{peak}	1875	1683 ± 125	-	-	kA
∆t	0.503	0.501 ± 0.012	-	-	fs
ε _{nxv}	0.55	0.56 ± 0.015	4.18	4.24 ± 0.25	mm mrad
σ _{x,y}	1.5	1.52 ± 0.25	5.84	5.95 ± 1.21	μm
β _{x,y}	4.3	4.5 ± 1.4	9.3	9.3 ± 3.7	mm
α _{x,y}	1.2	1.2 ± 0.25	3.34	3.39 ± 0.75	

Beam parameters at plasma injection. The mean value and the related standard deviation over the 50 samples is reported for each parameter in case of errors.

Review Committee June'23 - A. Giribono

RF Gun (rms)				
RF Voltage [∆V]	± 0.2	%		
RF Phase [Δφ]	± 0.03	deg		
S-band Accelerating Sec	ctions (rms)			
RF Voltage [∆V]	± 0.2	%		
RF Phase [Δφ]	± 0.03	deg		
X-band Accelerating Sections (rms)				
RF Voltage [∆V]	± 0.2	%		
RF Phase [Δφ]	± 0.1	deg		
Cathode Laser System ((max)			
Charge [∆Q]	± 2	%		
Laser time of arrival $[\Delta t]$	± 100	fs		
Laser Spot size $[\Delta\sigma]$	± 1	%		

From TDR Rev Comm Jun 2023

2.3 Beam Dynamics S2E Simulations

Numerical studies of sensitivity of final parameters of the electron bunch and photon pulse continue, despite limitations in computing resources. Results presented show that most parameters of the electron bunches at the plasma entrance are weakly sensitive to random variations of input parameters. The exception is the bunch charge or current, and the drive-witness bunch delay. This is somewhat worrisome since acceleration in plasma is quite sensitive to these parameters, for example for optimal beam loading that is essential to reach the low relative energy spread necessary for the FEL.

The RC recommends this issue to be addressed with high priority as soon as access to sufficient computing resources will be obtained. The RC also recommends that the loop between simulation parameters and tolerances be closed with the parameters expected from the corresponding hardware. This is essential for the consistency of the project. Computing Resources update

F. Fortugno

- It is made of 6 IBM Power 9, each equipped with 2 V100 GPU
- We are effectively running Architect code in parallel exploiting up to about 600 parallel process
- Other codes (i.e. Osiris, PIConGPU, WarpX, FBPIC) can be installed/used in the cluster
- Unfortunately, in April 2023 a major fault occurred on storage disk system causing a significant lack of storage memory that determined a stop in simulations activity
- A first batch of the storage disk supply was delivered and installed at the end of September and the simulation activity restarted in October 2023
- Additional storage memory dedicated to EuPRAXIA up to hundreds of TB is under procurement
- Additional IBM Power9s will be installed in the following months and infiniband connected

Computing Architecture & plan

Two Years From Now

FCS = Fibre Channel Switch

ks09.....ks04

6 Nodes no memory interconnection used as Front End

Beginning of 2024

6 Nodes no memory interconnection

Total memory = 10TB nVidia Cards = 80 Power9 Procs = 40 Cores = 320 Threads = 1280 Eu000 Eu010 Eu001 Eu011 Eu002 Eu012 Eu003 Eu013 Eu004 Eu014 Eu005 Eu015 Eu006 Eu016 Eu007 Eu017 Eu008 Eu018 Eu009 Eu019

200 Nodes with memory interconnection

F. Fortugno

Threads = 12800Tape Library -Virtualised in Three different TapeLibrary Raid6 Disk Arrays Ethernet Switch FCS = Fibre Channel Switch GARR Costi 6 Nodes no memory interconnection used as Front End ks09.....ks04 Comprare cavi interconnessione per Rack Oppure avremo 10 code per processi paralleli fino a 20 nodi Comperare anche license RedHat Da acquistare 4 Tape drive da 40 TB e 250 Cartridges 10 PB Da espandere almeno altri 600 TB

Ethernet Switch

+ GARR

200 Nodes with memory interconnection

Total memory = 100TB nVidia Card = 800

Power9 Procs = 400 Cores = 3200

Some Details on the June Jitter analysis in the Linac

- The analysis is performed over 50 samples obtained by means of S2E simulations
- The photoinjector is the source of the jittering of the beam separation and final rms beam length and current
- The X-band linac is the main responsible for
 - o the energy jitter that is negligible with respect to other parameters ← it operates almost on crest
 - final Twiss parameters that are almost stable the final focusing system is made of permanent magnet
 - the final profile of the witness peak current

The mean value over the 50 samples is reduced with respect to the photoinjector one with the benefit of a *reduced deviation* around the mean value

μ=0 fs μ =0.57mm-mrad 12 $\mu = 1925 \text{ A}$ 15 12 σ = 0.01 mm-mrad $\sigma = 173 \text{ A}$ $\sigma = 11.5$ machine [AU] of machine [AU] 5 01 ref = 1850 A 5 ď # # # 2 0.54 -0.02 -0.01 0 0.01 0.02 0.56 0.58 0.6 1850 850 $\epsilon_{nx,y}$ [mm-mrad] ı_{peak} (A) $\delta(\Delta t_{wit-dri})[ps]$ 20 μ =0.57mm-mrad 12 μ =0 fs $\mu = 1683 \text{ A}$ 15 σ = 0.01 mm-mrad $\sigma = 11.9$ σ = 125 A machine [AU] machine [AU] of machine [AU] fs ref = 1875 A of ę # 5 # # -0.02 -0.01 0 0.01 0.02 0.54 0.56 0.58 0.6 1400 1600 1800 2000 $\epsilon_{nx,y}$ [mm-mrad] $\delta(\Delta t_{wit-dri})[ps]$ I_{peak} (A)

Jitter analysis in terms of beam delay, witness emittance and peak current at the photoinjector (**upper**) and X-band linac (**lower**) exit

Witness-Driver distance distribution at the plasma module

Capillary length 60 cm

Cut at 80% of 30 pC charge

Nominal jitter case :

```
RF ampl ± 0.2 % (Sband)
RF phase ± 0.03° (Sband)
RF ampl ± 0.2 % (Xband)
RF phase ± 0.1 ° (Xband)
```

Half Sband phase&l jitter only

(phase value based on C-band solid state modulator performances and amplitude best performance at SPARC_LAB)

A. Del Dotto, S. Romeo 9 9

Witness energy distribution at the plasma module exit

Nominal jitter case:

A. Del Dotto, S. Romeo

RF ampl ± 0.2 % (Sband), RF phase ± 0.03° (Sband), RF ampl ± 0.2 % (Xband), RF phase ± 0.1 ° (Xband) vs half of RF S-band phase&l value

Results: energy = 1025 MeV, std ~ 3% vs 1025 MeV, std ~ 2%

Nominal case

Capillary length 60 cm

• Cut at 80% of 30 pC charge

Half sband-phase jitters

Witness energy spread distribution at the plasma module exit

A. Del Dotto, S. Romeo

Nominal jitter case:

RF ampl ± 0.2 % (Sband), RF phase ± 0.03° (Sband), RF ampl ± 0.2 % (Xband), RF phase ± 0.1 ° (Xband) vs half of RF phase&l value

- Capillary length 60 cm
- Cut at 80% of 30 pC charge

Results: $\sigma_{\delta} = 0.4\%$, $std \ 0.1\%$

Updated analysis for Photoinjector w S-band ampl. jitter contribution comparable w phase jitter contribution and neglecting the laser time arrival

Updated machine performances

- Updated jitter values have been evaluated as in Table
- The major upgrade of the machine regarded the photocathode laser TOA jitter → 0 fs
- In the chosen range the timing jitter depends quite linearly on the considered quantities

C. Vaccarezza, EuPRAXIA@SPARC LAB Review Committee, Nov 21-22, 2023

¹/₂ of Wit-Dri distance and Peak current variation

RF Gun (rms)				
RF Voltage [ΔV]	± 0.030	%		
RF Phase [Δφ]	± 0.015	deg		
S-band Accelerating Sections (rms)				
RF Voltage [ΔV]	± 0.030	%		
RF Phase [Δφ]	± 0.015	deg		
X-band Accelerating Sections (rms)				
RF Voltage [ΔV]	± 0.02	%		
RF Phase [Δφ]	± 0.10	deg		
Cathode Laser System (rms)				
Charge [Δ Q]	± 0.3	%		
Laser time of arrival $[\Delta t]$	± 0	fs		
Laser Spot size [Δσ]	± 0.3	%		
	•	10		

Alternative solution for COMB beam shaping

• To reduce the jitter sensitivity of the Witness-Driver electron beam configuration an alternative solution has been explored:

magnetic compression + transverse beam shaping

in the dispersive section

- A numerical cut has been applied to the particles close to the third magnet of the BC chicane to simulate the effect of a vertical wedge-shaped collimator like the one realized at Flash.
- To obtain the desired asymmetric current distribution a slightly chirped 400 pC beam ($\Phi = 90^{\circ}, 80^{\circ}, 60^{\circ}, 60^{\circ}$), has been generated in the photoinjector (Tstep code) to be longitudinally compressed in the LH and BC magnetic chicanes.
- Taking advantage of the typical double peak current configuration at the bunch edges, applying a central 550 mm cut in the horizontal plane resulted in a Witness-Driver configuration tracked up to the plasma exit by means of Elegant and Architect codes.
- A jitter analysis taking into account RF-phase and Voltage of the first Linac section, plus Dipoles Magnetic Field has been performed on 50 runs of the first considered working point

Energy-Spread Preservation and High Efficiency in a Plasma-Wakefield Accelerator

C.A. Lindstrøm (DESY), et al. Phys.Rev.Lett. 126 (2021) 1, 014801

Linac lattice

Nominal parameters:

RFX_TW1 ϕ =82.3, θ_1 =17.9E-2 rad, θ_2 =8.8E-2 rad

Changes:

- The LH chicane magnetic length from 12 cm to 20 cm
- The matching upstream Linac2 slightly longer

Longitudinal phase space evolution

Photoinjector exit

Upstream BC 3rd magnet

LH chicane exit

Upstream BC 3rd magnet after the cut

EuPRA

From Longitudinal to transverse phspace

Witness & Driver analysis

Printout for SDDS file Wit w0.out Particles = 59810 Printout for SDDS file Wit w0.out.ana Sx Sy St Sdelta enx eny m m 9.914898e-06 2.063363e-06 6.029986e-06 5.264951e-06 1.593571e-14 1.548020e-03 Printout for SDDS file Dri_w0.out Particles = 252036 Printout for SDDS file Dri_w0.out.ana Sx St Sdelta enx eny Sy s 2.412465e-06 1.557550e-06 2.807111e-06 1.576398e-06 1.366284e-13 8.109252e-04 QWit = ε_{x.n} 59.8100 ε_{x,y} QDri = 2 252.0540 0 10 20 30 40 \cap 230pC_Gauss_Comb_Dri_Wit_matched_v4s_Anna_FG

Witness bunch

Driver bunch

Jitter studies including acceleration in plasma for magnetic-mask shaping

 50 machines have been tracked trough the Linac up to the plasma entrance applying the RF phase and amplitude jitters in the accelerator according to:

- LNF measurements at TeX

&error_element name=RFX_TW_?, item=PHASE, amplitude = 0.08, bind = 1, bind_number=2, type="gaussian" &end &error_element name=RFX_TW_?, item=VOLT , amplitude = "26e3 0.2 * ", bind = 1, bind_number=2, type="gaussian",&end &error_element name=BLH?, item= angle, amplitude = 2.0e-5, bind=1, bind_number=4, type="gaussian" &end &error_element name=BC2_?, item= angle, amplitude = 1.2e-5, bind=1, bind_number=4, type="gaussian" &end

- **PSI measurements** ("RF System Performance in the SwissFEL Linac", C. Beard et al , JACoW LINAC2022 (2022), TH2AA02)

&error_element name=RFX_TW_?, item=PHASE, amplitude = 0.06, bind = 1, bind_number=2, type="gaussian" &end &error_element name=RFX_TW_?, item=VOLT, amplitude = "26e3 0.5 * ", bind = 1, bind_number=2, type="gaussian",&end &error_element name=BLH?, item= angle, amplitude = 2.0e-5, bind=1, bind_number=4, type="gaussian" &end &error_element name=BC2_?, item= angle, amplitude = 1.2e-5, bind=1, bind_number=4, type="gaussian" &end

Dri-Wit distance correlation with energy end energy spread (Capillary length 40 cm)

Cut at 80% of 60 pC charge

Cut at 40% of 60 pC charge

Energy variation (Capillary length 40 cm)

Cut at 80% of 60 pC charge energy = 1045 MeV, std~0.7%

Cut at 40% of 60 pC charge energy = 1045 MeV, std~0.7%

Energy spread variation (Capillary length 40 cm)

Cut at 80% of 60 pC charge energy spread mean value 0.2% with std~0.03%

Cut at 40% of 60 pC charge energy spread 0.05 % with std~0.007%

Jitter analysis Summary Table & Open Points

Summary Table

Comb scheme	Q pC	Final Energy std 80% charge	Final Energy Spread 80% charge	Final Energy std 40% charge	Final Energy Spread 40% charge
Velocity Bunching	30	3⇔2 %	0.4% std=0.1%		
Magnetic -shaping	60	0.7 %	0.2% std=0.03%	0.7%	0.05 % std=0.007%

Magnetic Shaping open points:

- Witness Transverse emittance optimization
- Beam loading check and optimization
- Geant4 simulation of the wedge

- Complete start2end jitter analysis
- Technological solution
- Microbunching Instability now priority item

- The BD simulation work restarted from October 2023
- For the Velocity Bunching Comb scheme, the obtained results show an energy std for the witness beam of about 3-2% with the previous jitter values (June 2023) and one half of these values respectively. For the energy spread we got $\sigma_{\delta} = (0.4 \pm 0.1)\%$ in both cases.
- With updated and better Jitter values Oct 2023 the studies in photoinjector showed one half of the sensitivity for Wit-Dri distance and Witness peak current.
- An alternative solution has been studied based on a "quasi" on crest single electron bunch provided by the Photoinjector ($\Phi = 90^{\circ}, 80^{\circ}, 60^{\circ}, 60^{\circ}$), longitudinally compressed and shaped by a numerical "mask" in the two available chicanes. The jitter studies concerning the Linac 1 plus chicanes system show an energy stability of 0.7 % and $\sigma_{\delta} = (0.2 \pm 0.07)\%$ with an 80% charge cut and $\sigma_{\delta} = (0.05 \pm 0.007)\%$ with a 40% charge cut.
- The magnetic solution has to be optimized in terms of transverse emittance of the Witness bunch and BD evolution in plasma for the Driver, and mostly the Jitter analysis must be completed including the Photoinjector.
- Moreover, a Montecarlo simulation of the beam interaction with a physical wedge collimator is necessary, together with the feasibility study of the mechanical system.
- Finally, the MIB effect and LH efficiency must be included.

Thanks for your attention

Backup Slides

The Basic Layout

Start2End for the basic layout

 Diagnostics feasibility/efficiency check w virtual measurements (priority order) to finalize the basic layout

S2E «basic» details:

PhotoInjector

Linac

Capillary entrance

	Witness	Driver	
E [MeV]	537.6	539.5	
ε _{x,y} [mm mrad]	0.68-0.70	2.9-5.3	
σ _{z-rms} [μm]	5.460	59.620	
ΔE/E [%]	0.057	0.095	
Δt [µm] (<u>ps</u>)	151 (0.505)		
σ _{x-rms} [µm]	1.2-1.3	4.5-6.3	
β _{x,y} [mm]	2.7-2.7	7.4-7.8	
α	0.83-0.85	3.2-3.2	

-0.1 0 0.1 0.2

z [mm]

y/ [mrad]

0

[mrad]

-0.05

0 0.05

x [mm]

C. Vaccarezza, EuPRAXIA@SPARC LAB Review Committee, Nov 21-22, 2023

[∕<mark>●</mark> 539 ∃

S2E «basic» details:

Elegant (WF, CSR) Astra (SC)

M. Rossetti Conti

3/4

Layout

Transverse beam size evolution w Space Charge (Astra)

0.02

0.02

0.01

-0.01 0

-0.02

-0.02

D

∆z mm

d√zd⊽

C. Vaccarezza, EuPRAXIA@SPARC_LAB Review Committee, Nov 21-22, 2023

Б×10⁻³

-5×10⁻³

0

∆z mm

%

m

rad

nm

0.1

1.7 10^-5

3.975

11.5 10^-6, 16. 10^-6

2.2 10^11, 2.85 10^11

Energy

bw

size

div

Photon number

wavelength

Beam from TL with space charge E=1GeV, Q= 30 pC.

EuPRAXIA@SPARC_LAB Parameter List update 1

Nominal FEL parameters from CDR

Parameter	Unit	PWFA	Full X-band
Radiation Wavelength	nm	3	3
Photons per Pulse	×10 ¹²	0.1	1
Photon Bandwith	%	0.9	0.5
Undulator Area Length	m	3	0
ρ(1D/3D)	×10 ⁻³	1	2
Photon Brilliance per shot	mm ² mrad ² bw(0.1%)	1 ×1	027

FEL Parameters Nov 2022

Parameter	Unit	PWFA	Full X-band
Radiation Wavelength	nm	3-4	4
Photons per Pulse	×10 ¹²	0.1- 0.25	1
Photon Bandwith	%	0.1	0.5
Undulator Area Length	m	3	0
ρ(1D/3D)	×10 ⁻³	2	2
Photon Brilliance per shot	$\binom{s \ mm^2mrad^2}{bw(0.1\%)}$	1-2×10 ²⁸	1×10 ²⁷

EuPRAXIA@SPARC_LAB Parameter List update 2

Electron Beam parameters from CDR

Parameter	Unit	PWFA	Full X-band
Electron Energy	GeV	1	1
Bunch Charge	pC	30	200
Peak Current	kA	1-2	1-2
RMS Energy Spread	%	1.1	0.1
RMS Bunch Length	μm	6-4	24-20
RMS norm. Emittance	$\mu { m m}$	1	1
Slice Energy Spread	%	0.03	0.02
Slice norm Emittance	mm-mrad	0.5	0.3

Electron Beam Parameters Nov 22

Parameter	Unit	PWFA	Full X-band
Electron Energy	GeV	1-1.2	1
Bunch Charge	рС	30- 50	200-500
Peak Current	kA	1-2	1-2
RMS Energy Spread	%	0.1	0.1
RMS Bunch Length	μm	6-3	24-20
RMS norm. Emittance	μ m	1	1
Slice Energy Spread	%	≤0.05	≤0.05
Slice norm Emittance	mm-mrad	0.5	0.5