

Neural network for He event reconstruction quality

AMS-Italy 30.11.2023

Francesco Rossi, Prof. P. Zuccon

Work strategy

Main goal:

Develop a fully connected neural network capable to identify well reconstructed events with charge 2.

How?

- 1. Obtain a charge 2 sample using ⁴He Monte Carlo.
- 2. Define two event categories, the good (signal) and bad (background) reconstructed.
- 3. Identify useful variables to distinguish between those categories.
- 4. Create a new dataset containing only the only relevant variables (features).
- 5. Build, train and evaluate the performance of a classifier.

Monte Carlo samples and data pre-selection

Signal and background definition

Sign of the reconstructed rigidity (R),inner-L1 using (GBL) to define signal and background.

Since MC has He events, well reconstructed events must have R > 0 and bad reconstructed have R < 0.

Signal: He events with R>0.

AMS Italy 30.11.2023

Background: He events with R<0.

Interesting variables

- Track pattern Y and XY sides (avoiding layer 9).
- Energy deposited in first eight layers of the tracker both Y and XY sides.
- Total number of tracker clusters, X and Y side.
- Rigidity absolute values considering: inner-L1, inner only, upper and lower inner half
- Track $\chi^2_{X/Y}$ normalised by the rigidity

$$\frac{|\chi^2_{X/Y} - \ln(|R|)|}{\chi^2_{X/Y} + \ln(|R|)}$$

• Compatibility between different spans:

$$\frac{||R|_{UHIn} - |R|_{LHIn}|}{|R|_{UHIn} + |R|_{LHIn}}$$

- Number of ACC clusters.
- Number of ACC counters.

Neural network for He event reconstruction quality

AMS Italy 30.11.2023

Creation of the dataset

Further requirements:

- Track pattern requirement: one hit (Y or XY side) on 7/8 layers, L1 and L2 must be • present.
- The rigidity fit (GBL) must exist for: inner-only, inner-L1, upper and lower inner half.
- •
- $|R|_{In}$ and $|R|_{InL1}$ > 2 GV $|R|_{UHIn}$ and $|R|_{LHIn}$ > 1 GV ullet

To avoid a bias, the dataset has the same amount of signal and background events. Only 1 out of 10 signal events is stored, until reaching the same amount of background events.

Total events number ~ 400 K

Fully connected neural network architecture

Fully connected neural network (FCNN) based on PyTorch. The network has a customizable layers number and nodes per layer number. The output of the network is a number ϵ [0,1].

The activation function is a Rectified Linear Unit (ReLU), and an *"Adam optimizer"* is used. The loss function is a Binary Cross Entropy.

70% of the dataset is used for training, 30% for validation.

The area under the Receiver Operating Characteristic (ROC) curve is used to quantify the performance of the network.

ROC curve calculation strategy

Network output divided by true label indexes.

Signal efficiency: normalized signal integration above threshold.

Background efficiency: normalized background integration above threshold.

Background rejection: 1 - bkg efficiency.

Network architecture

batch size = 2500 learning rate = 5e-3 Layers number = 8 Nodes per layer = 128, 128, 128, 128, 128, 128, 128

Neural network for He event reconstruction quality

AMS Italy 30.11.2023

Area under the ROC curve

AMS Italy 30.11.2023

AMS-02

Conclusions

The data preprocessing and the preliminary performance of a FCNN for He event reconstruction quality have been presented.

Next steps

- Further tests are required to understand if it is optimal to use the absolute value of rigidity as an input feature.
- Data preprocessing could be improved scaling all the features in the same range.
- MC is generated flat in logarithm, it might be necessary to reproduce the true spectra (upsampling?).
- Study the few background events with a network output ~ 1.

Conclusions

The data preprocessing and the preliminary performance of a FCNN for He event reconstruction quality have been presented.

Next steps

- A special thanks to Greta Brianti & Francesco Follega for the help
- Further tests are required to understand if it is optimal to use the absolute value of rigidity as an input feature.
- Data preprocessing could be improved scaling all the features in the same range.
- MC is generated flat in logarithm, it might be necessary to reproduce the true spectra (upsampling?).
- Study the few background events with a network output ~ 1.

Conclusions

The data preprocessing and the preliminary performance of a FCNN for He event reconstruction quality have been presented.

Next steps

- Further tests are required to understand if it is optimal to use the absolute value of rigidity as an input feature.
- Data preprocessing could be improved scaling all the features in the same range.
- MC is generated flat in logarithm, it might be necessary to reproduce the true spectra (upsampling?).
- Study the few background events with a network output ~ 1.

AMS Italy 30.11.2023 Neural network for He event reconstruction quality

Training loss functions

AMS Italy 30.11.2023

Training loss functions

AMS-02

AMS Italy 30.11.2023

Validation loss functions

AMS Italy 30.11.2023

Validation Loss functions (batch size = 500)

Validation loss functions

AMS Italy 30.11.2023

Roc curves

AMS Italy 30.11.2023 Neural network for He event reconstruction quality