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Feature distributions

´ 36 different features distribution

´ Different shape for signal and 
background

´ Rigidity and Mass are not 
available features for our 
algorithms

/storage/gpfs_ams/ams/groups/AMS-Italy/ntuples/v1.0.0/He.B1236



Boost Decision Tree

Advantages
´ No need of features preparation

´ Missing values do not affect the building of the tree

´ A decision tree is human readable

Disadvantages
´ Very sensitive to Overfitting

´ Higher training time with respect to other algorithms



Boost Decision Tree

´ Faster training speed:
Light GBM use histogram based algorithm i.e it
buckets continuous feature values into discrete 
bins which fasten the training procedure.

´ Lower memory usage:

Replaces continuous values to discrete bins
which result in lower memory usage.

´ Better accuracy: 

It produces much more complex trees by 
following leaf-wise split approach rather than
a level-wise approach which is the main factor
in achieving higher accuracy. However, it can 
sometimes lead to overfitting which can be 
avoided by setting the max_depth parameter.

https://lightgbm.readthedocs.io/en/stable/



Boost Decision Tree 
Diagraph Example

In our case, we implemented an 
algorithm with:

´ One-hundred trees

´ Stopping conditions: 
´ 4 leaves

´ No depth conditions

´ No purity conditions

´ Gradient Boosting

´ Learning rate of 0.25



Boost Decision Tree
Response

´ The BDT associates a response to 
each leave

´ The response is the ”probability” 
to belong to the 
background/signal class of an 
event ending in the leave

´ The BDT response is used as 
classificator



Boost Decision Tree
Response vs Rigidity

´ We can plot the BDT response vs the event 
Rigidity

´ We got a higher response for the signal 
and a lower for the background

´ A clear distinction is evident, but more 
background events are necessary



Boost Decision Tree
ROC Curve

´ The starting point, the baseline

´ We are going to implement ML 
algorithms to improve this result



Auto-Encoder
General introduction

´ Main purpose: image 
compression
´ Image reduction to a lower

dimension object: Code space

´ Image reconstruction from the 
Code space back to the 
original dimension

´ Convolutional layers

´ Max-Pooling layers

´ Up-Sampling layers



Auto-Encoder
Convolutional layers

´ Kernel, matrix that swipes on the 
whole input image. Each ConvLayer
may have an arbitral number of 
kernel

´ Stride, number of entries of the input 
images along which the kernel skip

´ Padding, parameter that add zeros
around the input image to regulate
the output dimension

Output dimension: 

Output =
Input−Kernel + 2 ∗ Padding

Stride
+ 1



Auto-Encoder
Max-Pooling Layers

´ No learning parameters, only devoted 
to the reduction of the dimensionality

´ Pooling kernel, swipe the original input 
keeping only the maximal value of 
those considered

´ Stride, number of entries of the input 
images along which the kernel moves

´ Padding, parameter that regulates the 
output dimension

Padding=‘same’

Padding=‘valid’  

Output =

⌈

Input− 1

Stride

⌉

+ 1

Output =

⌈

Input− Pooling

Stride

⌉

+ 1



Auto-Encoder
Up-Sampling Layers

´ Devoted to the increase of the dimensionality

´ Size, upsampling factor along rows and columns

´ Interpolation, parameter defining how the new values are evaluated
´ Nearest: the new pixel takes the value of the nearest pixel in the original image

´ Bilinear: the new pixel is the result of a weighted mean of the four nearest pixels of the 
original image



Auto-Encoder
Input and Output

Input
´ We arrange the whole events 

dataset as an array of 6x6 matrices

´ Each matrix is a single event

´ Each value of a matrix is a 
normalized feature of the event

´ Each feautre becomes a pixel of the 
input image



Auto-Encoder
Input and Output

Output
´ The Auto-Encoder reconstructs a 

corrispondent 6x6 image for each
event

´ The Auto-Encoder is trained to 
reconsttuct correctly ONLY THE 
SIGNAL

´ We expect good perfomances for 
the signal

´ We expect bad perfomances or 
the background



Auto-Encoder 
Training

´ We submit to the AEC a training set of images taken
from the original signal dataset

´ The AEC will perform its training confronting the output 
images with the input ones

´ The AEC goal is to reach the maximal accordance
between the input and the output



Auto-Encoder 
Validation

´ We submit to the AEC a validation set of images taken
from the original signal dataset

´ The AEC has never seen this set of images

´ The AEC is expected to perform well on the signal
validation set since it has been trained on the signal



Auto-Encoder 
Validation

´ We submit to the AEC a validation set of images taken
from the original background dataset

´ The AEC has never seen this set of images

´ The AEC is expected to perform poorly on the 
background validation set since it has been trained on 
the signal



Auto-Encoder 
Error in Reconstruction

´ We can evaluate the difference 
between an original and a 
reconstructed image, pixel by pixel:

´ The total error will be the AEC selector

E1 =
(R1 −O1)

2

36
.
.
.

E36 =
(R36 −O36)

2

36



Auto-Encoder 
ROC Curve

´ Less separation power w.r.t. the 
BDT

´ We are not really interested in 
the actual result

´ We want to know if the AEC is 
“learning” something different 
from the data with respect to 
the BDT 



Auto-Encoder 
Error vs Rigidity

´ The error on the signal is clearly 
concentrated on the lower 
values, as expected

´ The error on the background is 
distributed on a large range of 
values

´ A cut value is not evident



Auto-Encoder 
AEC Error vs BDT Response

´ The signal is characterised by a 
lower AEC error and a higher BDT 
response

´ The background is characterised 
by a lower BDT response but no 
actual range for the AEC error

´ The two selectors, the BDT 
response and the AEC error, are 
not tightly correlated



BDT combined with 
AEC
ROC Curve

´ The AEC error in reconstruction
becomes an extra feature of each
event

´ A new Boost Decision Tree is trained
once again, but now the events 
have an extra feature

´ The final result for the separation
power of the new BDT can be 
confronted with the previous result
for the original BDT



Comparison
TMVA vs LGBM

´ At low Rigidity LGBM is more 
powerful

´ At high Rigidity the results are similar
with TMVA slightly better at high 
signal selection and LGBM slightly
better at high background rejection


