
Development of ML
Algorithms for search of
Anti-Helium in Cosmic Rays
Luca Tabarroni
Università di Roma Tor Vergata
luca.tabarroni@roma2.infn.it

Feature distributions

´ 36 different features distribution

´ Different shape for signal and
background

´ Rigidity and Mass are not
available features for our
algorithms

/storage/gpfs_ams/ams/groups/AMS-Italy/ntuples/v1.0.0/He.B1236

Boost Decision Tree

Advantages
´ No need of features preparation

´ Missing values do not affect the building of the tree

´ A decision tree is human readable

Disadvantages
´ Very sensitive to Overfitting

´ Higher training time with respect to other algorithms

Boost Decision Tree

´ Faster training speed:
Light GBM use histogram based algorithm i.e it
buckets continuous feature values into discrete
bins which fasten the training procedure.

´ Lower memory usage:

Replaces continuous values to discrete bins
which result in lower memory usage.

´ Better accuracy:

It produces much more complex trees by
following leaf-wise split approach rather than
a level-wise approach which is the main factor
in achieving higher accuracy. However, it can
sometimes lead to overfitting which can be
avoided by setting the max_depth parameter.

https://lightgbm.readthedocs.io/en/stable/

Boost Decision Tree
Diagraph Example

In our case, we implemented an
algorithm with:

´ One-hundred trees

´ Stopping conditions:
´ 4 leaves

´ No depth conditions

´ No purity conditions

´ Gradient Boosting

´ Learning rate of 0.25

Boost Decision Tree
Response

´ The BDT associates a response to
each leave

´ The response is the ”probability”
to belong to the
background/signal class of an
event ending in the leave

´ The BDT response is used as
classificator

Boost Decision Tree
Response vs Rigidity

´ We can plot the BDT response vs the event
Rigidity

´ We got a higher response for the signal
and a lower for the background

´ A clear distinction is evident, but more
background events are necessary

Boost Decision Tree
ROC Curve

´ The starting point, the baseline

´ We are going to implement ML
algorithms to improve this result

Auto-Encoder
General introduction

´ Main purpose: image
compression
´ Image reduction to a lower

dimension object: Code space

´ Image reconstruction from the
Code space back to the
original dimension

´ Convolutional layers

´ Max-Pooling layers

´ Up-Sampling layers

Auto-Encoder
Convolutional layers

´ Kernel, matrix that swipes on the
whole input image. Each ConvLayer
may have an arbitral number of
kernel

´ Stride, number of entries of the input
images along which the kernel skip

´ Padding, parameter that add zeros
around the input image to regulate
the output dimension

Output dimension:

Output =
Input−Kernel + 2 ∗ Padding

Stride
+ 1

Auto-Encoder
Max-Pooling Layers

´ No learning parameters, only devoted
to the reduction of the dimensionality

´ Pooling kernel, swipe the original input
keeping only the maximal value of
those considered

´ Stride, number of entries of the input
images along which the kernel moves

´ Padding, parameter that regulates the
output dimension

Padding=‘same’

Padding=‘valid’

Output =

⌈

Input− 1

Stride

⌉

+ 1

Output =

⌈

Input− Pooling

Stride

⌉

+ 1

Auto-Encoder
Up-Sampling Layers

´ Devoted to the increase of the dimensionality

´ Size, upsampling factor along rows and columns

´ Interpolation, parameter defining how the new values are evaluated
´ Nearest: the new pixel takes the value of the nearest pixel in the original image

´ Bilinear: the new pixel is the result of a weighted mean of the four nearest pixels of the
original image

Auto-Encoder
Input and Output

Input
´ We arrange the whole events

dataset as an array of 6x6 matrices

´ Each matrix is a single event

´ Each value of a matrix is a
normalized feature of the event

´ Each feautre becomes a pixel of the
input image

Auto-Encoder
Input and Output

Output
´ The Auto-Encoder reconstructs a

corrispondent 6x6 image for each
event

´ The Auto-Encoder is trained to
reconsttuct correctly ONLY THE
SIGNAL

´ We expect good perfomances for
the signal

´ We expect bad perfomances or
the background

Auto-Encoder
Training

´ We submit to the AEC a training set of images taken
from the original signal dataset

´ The AEC will perform its training confronting the output
images with the input ones

´ The AEC goal is to reach the maximal accordance
between the input and the output

Auto-Encoder
Validation

´ We submit to the AEC a validation set of images taken
from the original signal dataset

´ The AEC has never seen this set of images

´ The AEC is expected to perform well on the signal
validation set since it has been trained on the signal

Auto-Encoder
Validation

´ We submit to the AEC a validation set of images taken
from the original background dataset

´ The AEC has never seen this set of images

´ The AEC is expected to perform poorly on the
background validation set since it has been trained on
the signal

Auto-Encoder
Error in Reconstruction

´ We can evaluate the difference
between an original and a
reconstructed image, pixel by pixel:

´ The total error will be the AEC selector

E1 =
(R1 −O1)

2

36
.
.
.

E36 =
(R36 −O36)

2

36

Auto-Encoder
ROC Curve

´ Less separation power w.r.t. the
BDT

´ We are not really interested in
the actual result

´ We want to know if the AEC is
“learning” something different
from the data with respect to
the BDT

Auto-Encoder
Error vs Rigidity

´ The error on the signal is clearly
concentrated on the lower
values, as expected

´ The error on the background is
distributed on a large range of
values

´ A cut value is not evident

Auto-Encoder
AEC Error vs BDT Response

´ The signal is characterised by a
lower AEC error and a higher BDT
response

´ The background is characterised
by a lower BDT response but no
actual range for the AEC error

´ The two selectors, the BDT
response and the AEC error, are
not tightly correlated

BDT combined with
AEC
ROC Curve

´ The AEC error in reconstruction
becomes an extra feature of each
event

´ A new Boost Decision Tree is trained
once again, but now the events
have an extra feature

´ The final result for the separation
power of the new BDT can be
confronted with the previous result
for the original BDT

Comparison
TMVA vs LGBM

´ At low Rigidity LGBM is more
powerful

´ At high Rigidity the results are similar
with TMVA slightly better at high
signal selection and LGBM slightly
better at high background rejection

