Properties of cosmic Deuterons and ³He

F. Dimiccoli & P. Zuccon (Trento University and INFN)

Why Z=1&2 isotopes?

- Helium nuclei are the second most abundant nuclei in cosmic rays.
- D and ³He are mostly produced by the fragmentation of ⁴He: simpler comparison with propagation models wrt heavy nuclei
- Smaller cross section of He: D/⁴He and ³He/⁴He probe the properties of diffusion at larger distances

• Different A/Z ratios of D and ³He allow to disentangle kinetic energy and rigidity dependence of propagation.

- AMS is composed by different sub-detectors for the redundant ID of the elements in CR
- The Mass is identified from the concurrent measurement of Rigidity, Velocity and Charge
- Mass resolution not good enough for event-by-event isotope ID -> Fit of distribution

TOF	$\sigma_{\beta}/\beta \sim 3\%$	0.2 < E _k < 1.1 GeV/n
RICH NaF	$\sigma_{\beta}/\beta \sim 0.3\%$	$0.7 < E_k < 3.7 \text{ GeV/n}$
RICH Agl	σ _β /β ~ 0.1%	2.6 < E _k < 8.9
		GeV/n

Light isotope measurements with AMS02

Isotope separation:

30/11/23

Method1: Isotope template fitting

The separation power depends on rigidity and velocity (β) resolutions

30/11/23

Fit to data (on Mass distributions)

The two remaining free parameters (σ_1 and μ_1) are fixed bin-by-bin directly fitting the mass distributions

Z=1 and Z=2 Template fits

Trends for the free parameter were extracted as a function of:

Method2: Global bi-dimensional unfolding on R vs β distributions

- Migration matrices for R and β from MC (iteratively adapted to data)
- Fit on the total Z=1(2) data distribution for TOF, NaF and Agl (assumption: unique continuous flux)

Deuteron Fluxes

MC templates carry informations about:

- Detector Efficiency
- Bin-to-bin migration

It is possible to directly use them to calculate Acceptance and Unfolding factor to normalize the counts and obtain fluxes

Helium-3 Flux

MC templates carry informations about:

- Detector Efficiency
- Bin-to-bin migration

It is possible to directly use them to calculate **Acceptance** and **Unfolding factor** to normalize the counts and obtain **fluxes**

Fluxes time dependence

- Time variation are visible above systematics only below ~ 5 GV
- ²H and ³He qualitatively follow the same time evolution of ⁴He
- More sophisticated analysis is needed

30/11/23

Draft of D and ³He paper

2

3

4

5

6

7

8

9

10

11

Origin of Cosmic Deuterons and Helium Isotopes Measured by the Alpha Magnetic Spectrometer

Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of D, ³He, and ⁴He fluxes are presented. The measurements are based on 21 million D, 28 million ³He, and 197 million ⁴He nuclei in the rigidity range from 1.9 to 21 GV collected from May 2011 to May 2021. We observed that all three fluxes exhibit nearly identical variations with time. Above 4 GV, D/⁴He and ³He/⁴He flux ratios are time independent. Their rigidity dependence is well described by a single power law $\propto R^{\Delta}$ with $\Delta_1 = -0.108 \pm 0.003$ for D/⁴He flux ratio and $\Delta_2 = -0.290 \pm 0.002$ for ³He/⁴He flux ratio, revealing that, unexpectedly, cosmic rays D and ³He have different rigidity dependence. This shows that contrary to expectations, cosmic deuterons have a sizeable primary component.

Introduction. — Hydrogen nuclei are the most abundant cosmic-ray species. They consist of two isotopes, protons (p) and deuterons (D). Big Bang Nucleosynthesis predicts a very small production of D, which is known to be consumed in the nuclear processes occurring during stellar evolution [1]. Consequently, few deuterons are expected to be accelerated in supernova remnants like primary cosmic rays such as p and ⁴He, C, O, ..., Fe nuclei. Instead, similar to the ³He nuclei, D are overwhelmingly originated from interactions of ⁴He with the interstellar medium (p, He). Together with ³He and heavier nuclei like Li, Be, B, ..., F they are called seconday cosmic rays [2].

¹⁸ D and ⁴He interaction cross sections with the interstellar medium are significantly smaller than those of heavier ¹⁹ nuclei (Li, Be, B, C, N, O, ...) probing a larger Galactic volume [3–6]. Explicitly, $D/^4$ He and ³He/⁴He flux ratios ²⁰ probe the properties of diffusion at larger distances, and therefore, provide unique input to cosmic rays propagation ²¹ models [7–10].

Previously, the ³He and ⁴He fluxes have been published by AMS in the rigidity range from 2.1 to 21 GV for ⁴He and ²³ from 1.9 to 15 GV for ³He, each with half of the current statistics [11]. There have been measurements of deuteron ²⁴ and helium isotope fluxes and their ratios as functions of the kinetic energy per nucleon with large (~40%) errors ²⁵ [12–16]. There are no previous measurements of D/⁴He flux ratio as a function of rigidity.

In this Letter, precision measurements of D, ³He, and ⁴He fluxes and their ratios are presented with rigidity from 27 1.9 to 21 GV, based on 21 million D, 28 million ³He, and 197 million ⁴He nuclei collected by AMS from May 2011 to ²⁸ May 2021. The fluxes have been measured in 30 time periods of four Bartels rotations each (108 days).

²⁹ The total time-averaged flux error at 10 GV is 3.0% for D, 2.3% for ³He, and 1.6% for ⁴He.

FIG. 1. a) AMS time-averaged ⁴He (red) and proton (blue) fluxes multiplied by $\tilde{R}^{2.7}$ as functions of rigidity with total errors. For display purposes, proton flux is scaled by a factor 0.3. b) AMS time-averaged ³He (red) and D (blue) fluxes, multiplied by $\tilde{R}^{2.7}$ as functions of rigidity with total errors. The shaded regions show the range of the time variation of the fluxes.

FIG. 2. The AMS D (red points), ³He (blue points), and ⁴He (black curves) fluxes as functions of time for three rigidity bins. The ³He and ⁴He fluxes have been scaled to obtain the same time-averaged flux as D in each rigidity bin. The errors are the quadratic sum of the statistical and time-dependent systematic errors. In each rigidity bin the three fluxes show a nearly identical time behavior.

FIG. 3. The AMS a) $D/({}^{3}\text{He} + {}^{4}\text{He})$,b) $D/{}^{4}\text{He}$, and ${}^{3}\text{He}/{}^{4}\text{He}$ flux ratios as functions of kinetic energy per nucleon with total error, together with previous measurements [12–16] and the cosmic ray latest propagation model GALPROP [35] predictions (shaded areas). The areas show the uncertainty of GALPROP prediction due to different solar modulation during the time period of the AMS observations.

TIPFA

Comparison on D/⁴He

Error bars TIFPA:

- Stat. (+ uncorr. syst) <σ_s>/sqrt(N) v
- Fit systematic $<\sigma_F>$ v
- Unfolding syst. $<\sigma_U > v$
- Acceptance error $<\sigma_A>$ X

Error bars CIEMAT:					
•	Statistical <os>/sqrt(N)</os>		V		
•	Unfolding	< \sigma_u >	V		
•	Corr	< \[\sigma_c >	V		
•	Acceptance	< \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Х		

Isotopes flux ratios

FIG. S7. The AMS D/p flux ratio as a function of rigidity with total errors. The blue curve shows the fit result of $C (R/R_0)^{\Delta}$ for 4GV < R < R₀; C for R ≥ R₀. The fit yields $C = 0.027 \pm 0.001$, $\Delta = 0.09 \pm 0.01$ and R₀ = 14 ± 1 with a $\chi^2/d.o.f.$ of 8.6/16. As seen, above R₀ \simeq 14GV the D/p flux ratio is compatible with a constant.

FIG. 4. AMS time-averaged D/⁴He (red circles) and ³He/⁴He (green squares) flux ratios as functions of rigidity with statistical and uncorrelated systematic errors added in quadrature. Solid blue and black curves show power law fits $C (R/4\text{GV})^{\Delta}$ for R > 4 GV to the D/⁴He and ³He/⁴He flux ratios respectively. Shaded areas show their time variation. For D/⁴He flux ratio the fit yields: $\Delta_1 = -0.108 \pm 0.003$ and $C_1 = 0.175 \pm 0.004$ with $\chi^2/d.o.f.$ of 11/17. For ³He/⁴He flux ratio the fit yields: $\Delta_2 = -0.290 \pm 0.002$ and $C_2 = 0.140 \pm 0.003$ with $\chi^2/d.o.f.$ of 21/17.

Background from He fragmentation above L1

FIG. S2. Mass distribution of He events interacting between L1 and L2 with $0.6 < E_k < 0.75 \text{ GeV/n}$ for data (black points) and p, D and T templates (red, blue and green histograms) obtained from MC simulation. The black line shows the template fit to the data. The events were selected by requiring a measured charge Z=2 in tracker L1 and charge Z=1 in the inner tracker (L2-L8).

FIG. S3. Reconstructed mass distributions for Z=1 events (a and c) and for Z=2 events (b and d) for two velocity intervals corresponding to the two rigidity intervals for D of 2.15 < R[GV] < 2.40 using β from TOF (top) and 9.26 < R[GV] < 10.10 using β from RICH-Agl (bottom). The figures show also the template fit to the data and its contributions.

F. Dimiccoli - UniTN & TIFPA

Modelling beta resolution

FIG. S4. Reconstructed inverse velocity $(1/\beta)$ distributions at high rigidity (50 < R[GV] < 200) for Z=1 events obtained using TOF (a) and RICH-Agl (b). Such distributions are modeled (red continuous line) with the combination of a Gaussian core (blue dashed) and a second Gaussian residual distribution (green dashed), with the addition of a third Gaussian + power law tail distribution modeling the residual combinatory tail (black dashed).

F. Dimiccoli - UniTN & TIFPA

Isotopes flux ratios

FIG. S7. The AMS D/p flux ratio as a function of rigidity with total errors. The blue curve shows the fit result of $C (R/R_0)^{\Delta}$ for 4GV < R < R₀; C for R \geq R₀. The fit yields $C = 0.027 \pm 0.001$, $\Delta = 0.09 \pm 0.01$ and R₀ = 14 ± 1 with a $\chi^2/d.o.f.$ of 8.6/16. As seen, above R₀ \simeq 14GV the D/p flux ratio is compatible with a constant.

Low energy time dependence

FIG. S5. The AMS $D/^{4}$ He and 3 He/ 4 He flux ratios as function of 4 He flux for three characteristic rigidity bins. The blue lines show the fit with Eq. (3) result.

Low energy time dependence

FIG. S6. Eq 3 k_i fitted values for a) D/⁴He and b) ³He/⁴He flux ratios as function of rigidity.

$$\frac{\Phi_{(\mathrm{D},^{3}\mathrm{He})}^{i}/\Phi_{^{4}\mathrm{He}}^{i}}{\langle\Phi_{(\mathrm{D},^{3}\mathrm{He})}^{i}/\Phi_{^{4}\mathrm{He}}^{i}\rangle} - 1 = k_{(\mathrm{D},^{3}\mathrm{He})}^{i} \cdot \left(\frac{\Phi_{^{4}\mathrm{He}}^{i}}{\langle\Phi_{^{4}\mathrm{He}}^{i}\rangle} - 1\right)$$

F. Dimiccoli - UniTN & TIFPA

Summary

- AMS-02 measured the ³He and D fluxes using 10 years of data in the rigidity range from 2GV to 20 GV.
- **Below ~4GV:** solar modulation induces a time evolution of the the measured fluxes larger than the systematics of the measurement.
- Above ~4GV: D/4He and 3He/4He flux ratios are time independent. Their rigidity dependence is well described by a single power law ∝ R^Δ with

 $\Delta_1 = -0.108 \pm 0.003 \text{ D}/^4\text{He}$

 $\Delta_2 = -0.290 \pm 0.002 \ {}^{3}\text{He}/{}^{4}\text{He}$ showing that cosmic rays D and ${}^{3}\text{He}$ have different rigidity dependence. The significance of $\Delta_1 > \Delta_2$ exceeds 10 σ . This shows that contrary to expectations, cosmic deuterons have a sizeable primary component

Thanks for your attention

F. Dimiccoli - UniTN & TIFPA

30/11/23

27