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The contribution to the radiation field of the cavern from different particle types from 4000 fb-1 of
luminosity, as derived from FLUKA simulations,7 TeV per beam, is detailed in Fig. 3.1, which
shows that neutrons are the primary component of radiation outside of the CMS main structure,
and neutrons with energy below 20 MeV dominate. [BRIL TDR]
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Transition from Bonner spheres to TetraBall
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Rad-hard Silicon Carbide thermal neutron detectors

Sensitive area to be chosen from 1 mm?2 up to 8 mm? (different field intensity)
Slightly biased to reduce noise without increasing gamma response

Dual detector: Thermal n signal = SLiF Covered SiC - bare SiC

Radiation hardness: tested @ TRIGA reactor (LENA Pavia) up to 1E+14 cm™
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Thermal Rad damage beyond approx 102 cm
Response (cm?) | Left shift ? Integral Response decrease
(3% s.d.)
1 cm? Si + SLiF 3.0E-2 v -5% per 1012 cm2
1 mm? SiC + ®LiF 3.0E-4 v constant within 3% up to 5.6°10'3 cm™

Eur. Phys. J. Plus (2022) 1371358



Testing the Dual detector

Thermal n signal = °LiF Covered SiC - bare SiC

).1093/rpd/ncx298

The Gamma rejection: very good, measured at Torino e-Linac neutron facility
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TetraBall design

top view of the n-th slice

* Tetrahedral arrangement of detectors covers all directions

* QOverall diameter 23 cm

* Radial positions: 3cm,5cm, 7 cm, 9 cm, 10.5 cm (to be tuned with simulation)

* (1 central detector + 5 detectors x 4 axes = 21 detectors) x 2 (covered + uncovered) = 42 SiC
* High-E component accessed by introducing lead inserts using (n,xn) reactions

* Calibrated to allow neutron monitoring across the whole energy spectrum



TetraBall design

Back-end

a

Possibility of using
existing medipix
cables and
infrastructures

under 1investigation
(23-24 Nov on site)

Front-end

UXC

Digital data:
RS 485 (up to 1.2 km)

L~

Analog lines: about 50 cm

USC
1gle acquiring PC

using existing cables

~,

PE + boron shield fo
- frontend shielding
- Tetraball “holder”




TetraBall design

ectronics being developed

JALOG part (Through-hole prototype working in lab)
SMD technology (surface about 2-3 cm? per channel)
Charge pre-amplifier + Gaussian shaper amplifier
with adjustable gain
3 channels/board

GITAL part (DIGITECH SRL)
Digitalisation, thresholding, counting and data

formatting for RS485
3 channels/board

Prototypes under productions — expected by Dec23
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TetraBall proposal based on a technology (1

developed and demonstrated @INFN

1 ’ INFN Projects:
NESCOFI (2011-2013)
NEURAPID(2014-2016)
e_LiBANS (2016-2018)
ANET(2019-2022)
Enter BNCT(2020-2023)

People involved on INFN side:

INEN  R.Bedogni INFN

btk Masunals & Froies Bacloars

L. Russo Post graduate (100%)
M.A. Caballero post-doc (25%)
A.I. Castro Campoy post-doc (25%)

T. Napolitano Mech Ing (Staff)

M. Costa,

E. Mafucci, Post-doc (100%)

V. Monti, Research Techn (Staff)
E. Durisi Research Techn (Staff)

P. Mereu Mech Ing (Staff)
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TetraBall calibration

Step1l) Calibration of single channels at INFN Thermal neutron facilities

Step2) Calibration of the complete Tetraball system at :

» 71 keV-1.2MeV mono-energetic beams (National Physics Lab-Teddington UK or PTB)

» MeV region (< 14 MeV)
Am-Be , >2C; (ENEA-Bologn

» High Energy CERF
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TetraBall timeline 2024-2025

LHC Timeline _
Check UXC existing cables
023 2024 2025 Analog & digital prototype boards
[3]3]A]s[oN[D] 3[FM[AIM] 3] 3]A[s[oN[D| 3] FIMAM] 3] [AlS[O]N[D] Assembly single channel
Run 3 In?rtalltﬂ.nglle cf;]annelll.n lLJJ))((CC
WTTTTT est single ¢ anr.we in .
i Technica stop Simulation

s physics

TB Mechanical design

Material purchase
B operational in Q2-Q3 2025 Detector purchase

lependent from the rest of the CMS

r upgrade -2 we have some contingency
1ediate Goal: operate single channel
mode in April-May 2024

issioning with beam
are commissioning/magnet training

Electronic rad test (reactor)

TB Holder Mechanical design
Detector coating with LiF

Assembly and calibrate single channels
Assemblying Tetraball system and Test
Calibration TB in reference facilities
Installation and Commissioning
TetraBall Operation

10W :

ck UXC existing infrastructure

NP simulation....

\bly and calib single channels Q3 2024
embly Q4 2024




TETRABALL - Conclusions

INFN —TETRABALL: Specific contribution for PHASE 2 BRIL—-NRM
* Single exposure, suitable for Online Monitoring
* |sotropic Response
* Wide energy range thermal to GeV
e Radiation hard
* Portable system

INFN Frascati and Torino physicists and engineers committed to the task

Aim to deliver the first TetraBall to be operational in Run 3 - 2025

Next steps (near future):

* TBall Simulation: energy and directional distributions of neutrons and hadrons in specific UXC locations
are available = input to MCNP simulation

* TBall UXC to USC check existing BRIL-NMR infrastructure (PS, cables, connectors...)
-November 22-24-th 2023 first inspection into the CMS Cavern with BRIL-TC

* Mixed radiation field = Dual Mode Counting: Operation of a single channel in the UXC Q1 2024

-Analog and digital electr. prototype boards expected Dec2023 13
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Bonner Spheres Spectrometer
Physics Reports 875 (2020) 1-65

~overs thermal to GeV energy range
sotropic response
Simple operation €5 168 167 184 185 T4 3 B0 51 3
etector can be changed to match the field in terms of intensity and photon compon
/ery accurate
the fluence in large energy intervals can be determined with <6% unec.

Jnfolding still needs skill but, after 60+ years, unfolding method are better
stablished:

O ways to provide pre-information according to the specific problem

O uncertainty treatment

A codes became “friendly” / training material online / unfolding courses / exercise

Simulated Response (cm’)

0

Continuous and partially superimposed response functions: limited resolving power
sequential irradiations are needed — time consuming — unsuited for real time monz




From Bonner Spheres to Single Moderator Neutron Spectrometers

Jnfolding in BSS pretends to infer a complex neutron spectrum starting from less than ten count rate

'he problem is underdetermined and needs therefore some amount of pre-information from the user. (
he infinite mathematical solutions, only a limited subset is physically acceptable (= the solution withi

s uncertainty boundary)

re-information is needed to identify that subset: “suggesting” an educated guess spectrum, i1.e. a guess
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From Bonner Spheres to Single Moderator Neutron Spectrometers

History of SMINS

A sphere made of boron-loaded scintillating plastic read out by
an array of light detectors (SLAC) (IAEA proceeds.)

2010

30 cm PE sphere embedding TLDs symmetrically arranged along the 3
axis. Summing up signals at same radial position gives isotropic response.
NIMA 584 (2008) 196-203; NIMA 613 (2010) 127-133

First PASSIVE prototype with Dy activation foils — 37 positions S e, 2011
Radiat. Meas. 46 (2011) 1712-1715 A

6l

In view of the active version, design modified to 31 positions and
added internal 1 cm lead layer for high-E
NIMA 677 (2012) 4-9

NIMA 767 (2014) 159-162

SPZ Spherical Spectrometer — direct reading [, @J
Eur. Phys. J. Plus (2015) 130: 24 - ' "’f,




SP2 Internal thermal neutron sensors

NPD — thermal neutron pulse detectors

ypical: 1-cm? Si-diode covered by 30 um °LiF
Rad damage at large accumulated fluence

lightly biased to improve noise gamma rejection
ustom multi-detector analog board (charge preamp. + shaper amp.)

rdividually calibrated in thermal neutron fields.
0.03 cm? (typical fluence response to thermal neutrons)

igital elaboration using commercial digitizer and laptop

efs.: NIMA 1018 (2021) 16585
NIM A 780 (2015) 51-54
Radiat. Prot. Dosim. 161 1-4 (2014) 229-232



Silicon Carbides

Rad hardness tests at TRIGA reactor (LENA Pavia)

v 1.2¢1019 em™@st@ 250 kW in thermal column
v SiC irradiated up to 5.6°10'3 cm™

Thermal Rad damage beyond approx 10'? cm™
Response (cm?) | Left shift ? Integral Response decrease
. (3% s.d.) .
1 cm? Si + °LiF 3.0E-2 vV |+ -5%perl102cm?  —
| mm? SiC + °LiF 3.0E-4 v __| constant within 3% up to 5.6°10"3 cm-
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