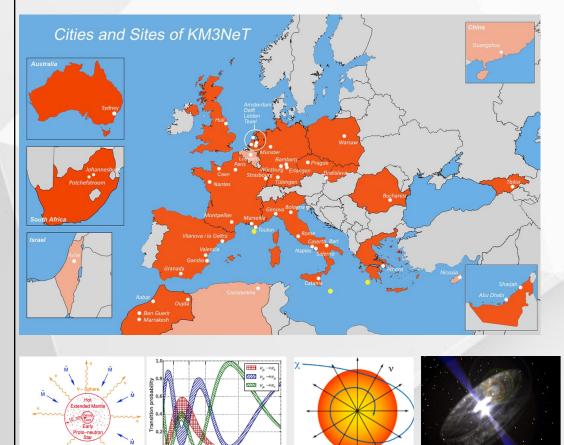


KM3NeT Data processing and Monte Carlo simulations

KM3NeT

The path to cosmic neutrino event identification


A.Sinopoulou

anna.sinopoulou@ct.infn.it

Espresso talk, 22.11.2023

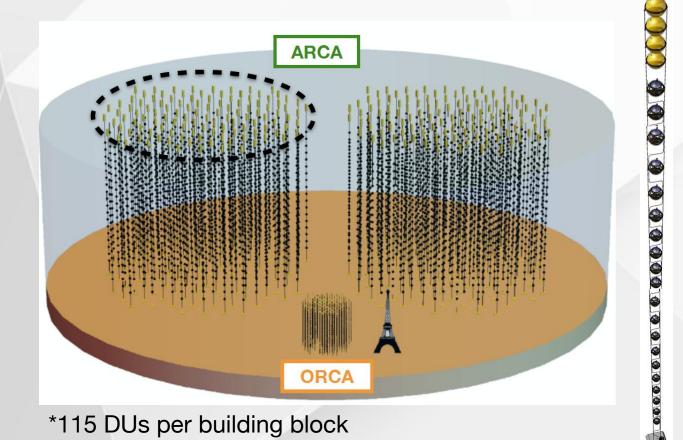
KM3NeT

KM3NeT is 1 collaboration contructing 2 neutrino detectors in the Mediterranean Sea, based on 1 technology.

KM3NeT/ARCA: observation of high energy neutrinos (GeV - TeV)

KM3NeT/ORCA: determination of the neutrino mass hierarchy (MeV)

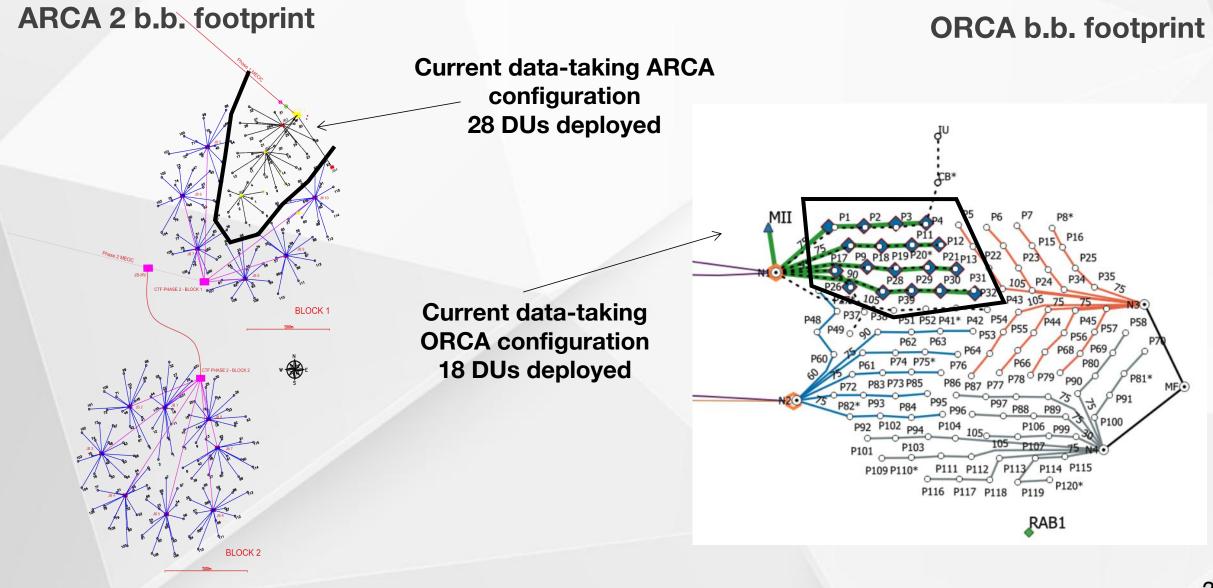
KM3NeT innovative element Digital **O**ptical **M**odule (DOM)

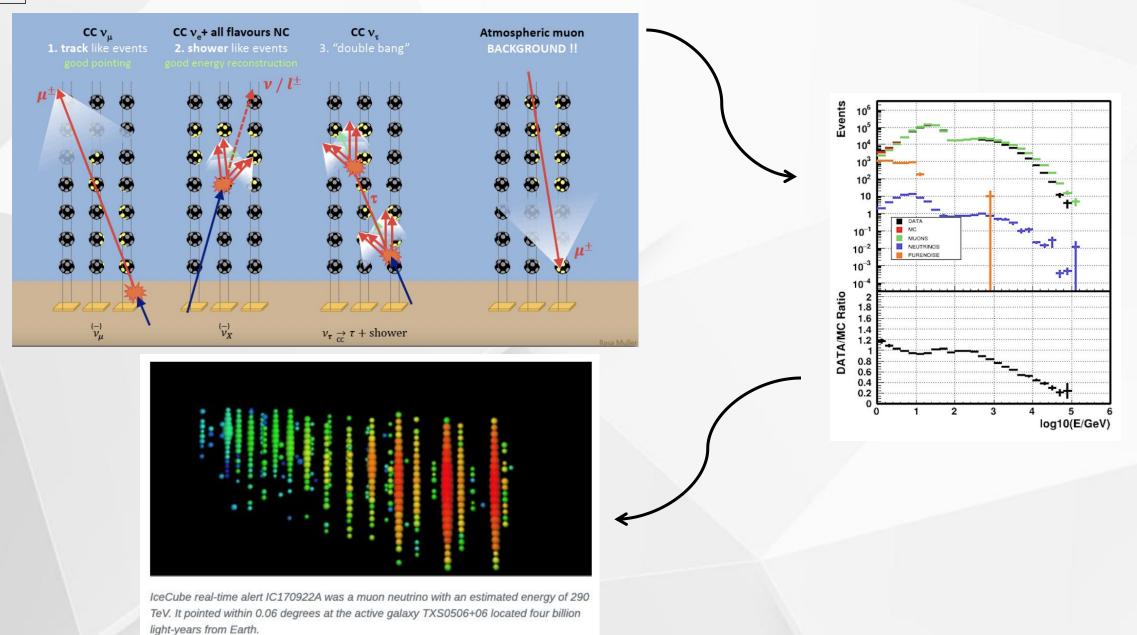

Each DOM is a small detector instrumenting 31 3'' PhotonMultiplier tubes (PMTs)

© 4π signal coverage © excellent angular resolution

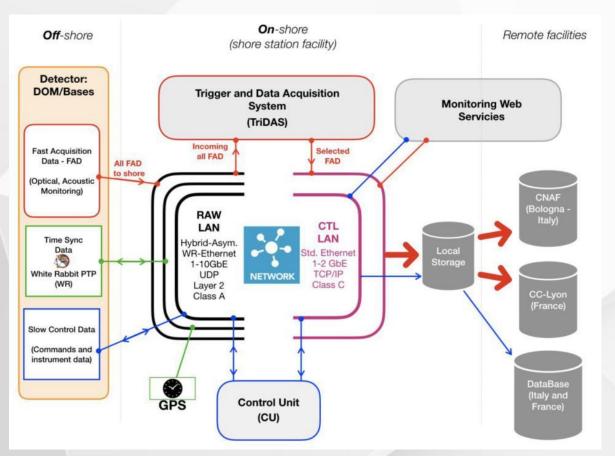
Physics studies in a wide energy range from MeV to PeV

KM3NeT detector configurations

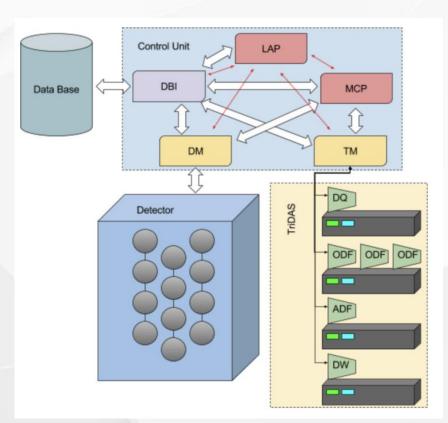

Different objectives -> different geometries BUT same technology !!!


		ORCA (denser)	ARCA (larger)
	Eff. Mass	~ 7 Mt	~ 1 Gt
	Line length	200 m	650 m
	Interline distance	20 m	90 m
DOM	Vertical spacing	9 m	36 m
	Depth	~ 2500 m	~ 3500 m

Detection Unit (DU)


KM3NeT detector status

Data from detection to discovery...


DAQ - how are data recorded and distributed to researchers ?

signal-to-noise ratio extremely disfavoured : muon rate (atmospheric dominating) : O(100) Hz/km³ 40K decays (~constant) : O(10) kHz/PMT Bioluminescence (occasional) : O(100) kHz/PMT

- complex DAQ structures in extreme conditions (mandatory: minimal underwater complexity)
- different data streams: optical, acoustic, etc.

"All-data-to-shore" principle (a.k.a. trigger-less streaming readout)

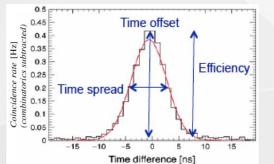
Calibrations - essential info to "correctly" reconstruct the events

In order to achieve the physics goals, we need to ensure:

- Recording and registering very fast events, events happening in <ms.
- Event reconstruction relies on good time-position relative accuracy within the detector.

GEOMETRY: PMT positions

Nominal positions: "Ideal" detector positions ROV updated positions: "Actual" detector positions after deployment (GPS) Compass corrections: Detector orientation Acoustic Positioning System correction: based on hydrophones and emitters Compass + Acoustic Positioning System: Fit of the DU position Muon crosschecks: track quality etc...

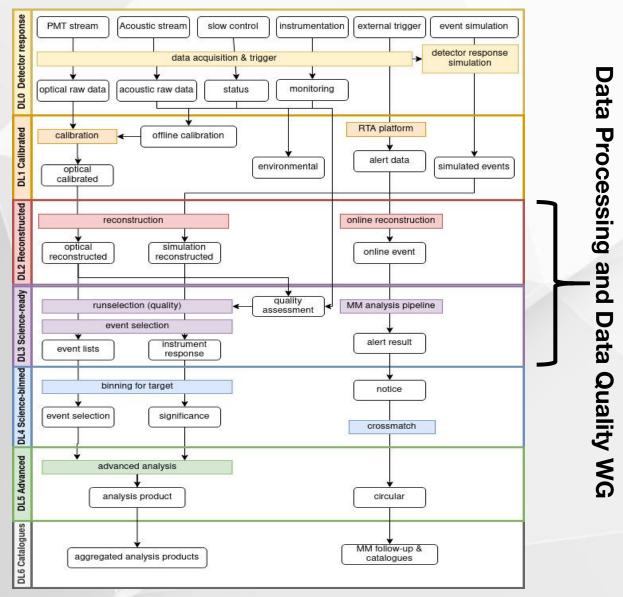

TIME (T0): PMT time constants + efficiencies

Dark Room:

- intra-DOM, efficiencies (K40)
- inter-DOM crosschecks/tests with nanobeacons, muons (in-situ)
 Dark Room to Sea:
- inter-DU

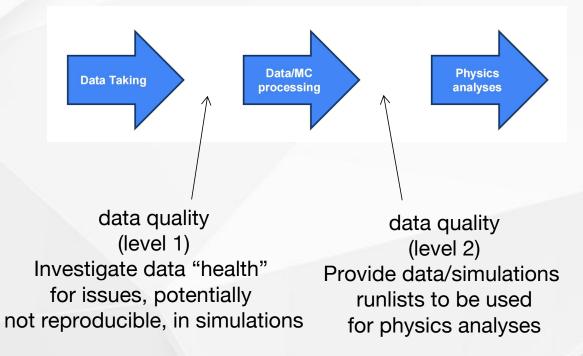
HV-tuning:

• PMT gain equalization


Northing [m]

Nanobeaco

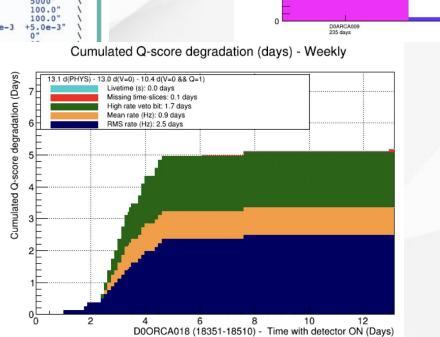
Easting [m]

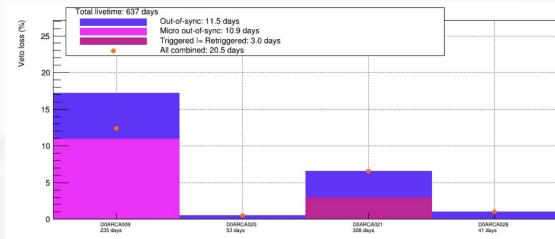

KM3NeT data management

Data management distributed in levels.

The **Data Processing & Data Quality** working group (main) responsibilities are:

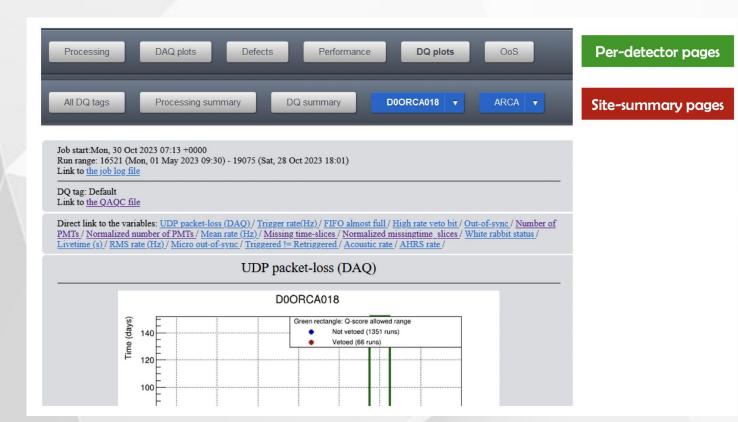
- To ensure the data taking quality by performing studies on quality assessments of the KM3NeT.
- To regularly process the data and to produce MC simulations ensuring that the input for data analyses are the best obtainable at a given moment.




Data quality

- Investigate data "health" probable issues that may not be reproducible in simulations
- Cross check with database info and shift reports for potential problems or interruptions in the data taking

Access quality score (Q) and veto score (V) based on important observables during data taking



ARCA with active DUs: Veto-score monitoring

ORCA with active 18 DUs: issues that affect the Q-score

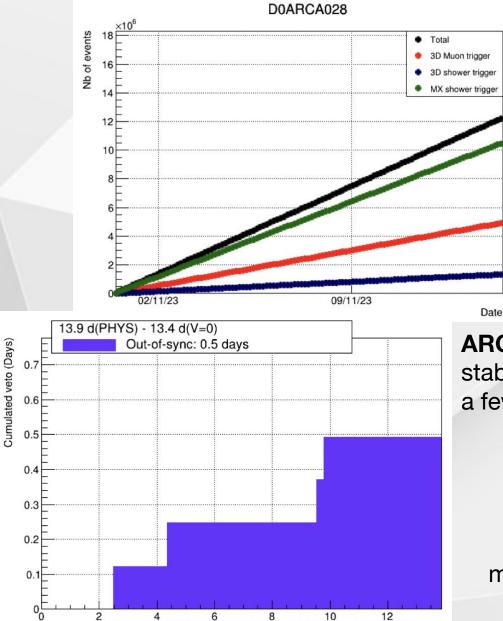
Data quality - WG developments & activities

1. Web page to monitor data quality for each site.

2. Implementation of *defects* page: for each author, runs, DP-DQ-DAQ, issue "severity", possible recovery.

3. Out-of-Sync issue investigation online.

4. **Cross-checking** of defects with DQ observables and data quality health.

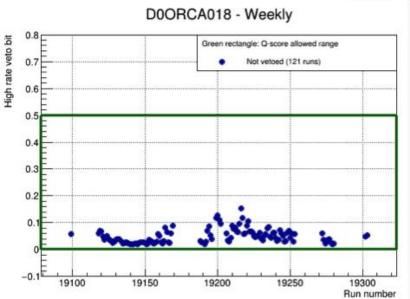

5. Quality score degradation investigation.

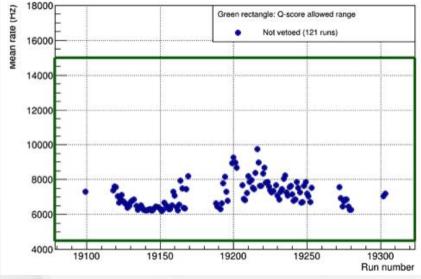
6. Optimization of the **veto** score conditions.

Biweekly report on tha data-taking quality status in DPDQ group meetings.

Discussion on on-going issues.

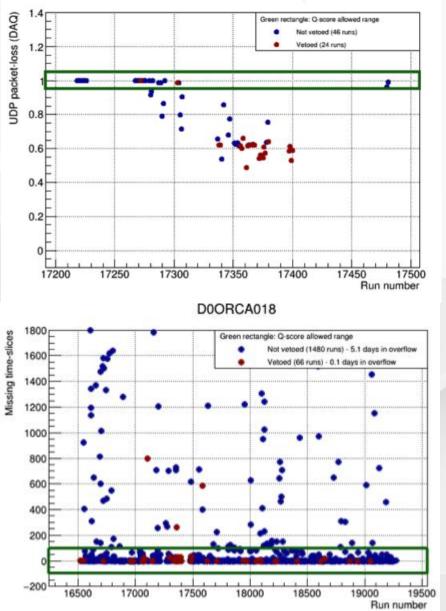
Data quality - Data taking monitoring (a few examples)

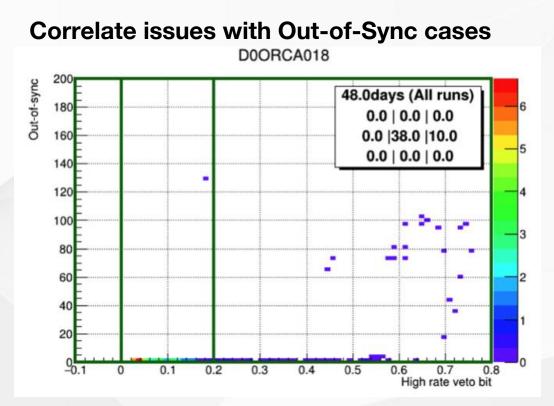



D0ARCA028 (18994-19109) - Time with detector ON (Days)

ARCA detector: stable data taking a few Out-of-Sync cases

ORCA detector:


hiccups in the data taking (understood, not warning) moderate bioluminescence activity



Data quality - Developments/Investigations (a few exapmples)

D0ORCA018 - Weekly

DAQ plots added in the web page

Missing timeslices investigation

d = | (Run time stop – run time start) – run livetime |

Data processing

- Organize & schedule mass and test processings.
- Implement mass processing tool/workflow.
- Performance investigations (collab. with software WG and with simulations WG).
- Monitor the computing systems usage.
- Maintain documentation.

Data-taking periods to be processed [edit]

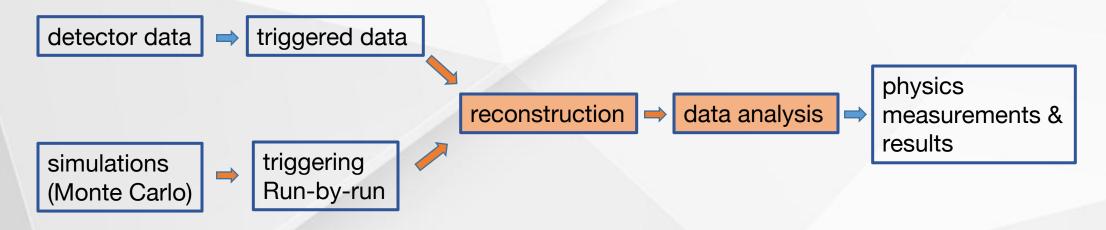
ARCA data-taking periods

Detector (DB naming)	Detctor ID (DB number)	Run range	Dates
D0ARCA020	116	12288 - 13197	July - September 2022
D0ARCA021	133	13198 - 17664	September 2022 - 11 September 2023

ORCA data-taking periods

Detector (DB naming)	Detctor ID (DB number)	Run range	Dates
D_ORCA006	49	7221 - 11296	February 2020 - November 2021
D0ORCA010	100	11323 - 13212	December 2021 - May 2022
D0ORCA007	110	13213 - 13703	May - June 2022
D1ORCA013	117	13704 - 13961	July 2022
D0ORCA011	123	13964 - 14318	August - September 2022
D1ORCA011	132	14356 - 15146	October - December 2022
D0ORCA015	138	15158 - 16339	December 2022 - April 2023
D1ORCA015	146	16341 - 16516	5 April 2022 - 29 April 2023
D0ORCA018	148	16517 - 18298	May 2023 - 31st August 2023

Computing Centers & Taskforces [edit]


Computing center	Detctor	Taskforce
CC Lyon	D_ORCA006, D0ORCA018	Santiago, Walid
Nikhef	D0ORCA011, D1ORCA011, D0ORCA015, D1ORCA015	Jhilik, Vincent, Mieke
CNAF	D0ARCA020, D0ARCA021	Vittorio, Anna, Mieke
ECAP	D0ORCA010 (KM3NeT_00000100), D0ORCA007 (KM3NeT_00000110), D1ORCA013 (KM3NeT_00000117)	Kay

ORCA																					
Week	19/6 26/6	3/7 10 /	7 17/7 24/7 August	4/9 11/9	18/9	25/9 2/10	9/10	Collab.M 23/10					4/12 11/	28/12 25	5/1: 1/	1 8/1	15/1 22/	/1			
Preparatory Phase	-								D_0ORCA D	D_OORCI D_OOR	C D_00RCA00	6									
VG requests										DUORG											
Software tests											D10RCA011										
/ersion validation																					
Version freezing																					
nput Preparation																					
Calibration preparation																					
Data Quality preparation																					
Mass production																					
Pre-mass production																					
/alidation																					
Mass production																					
DPDQ WG Report																					
Processing status	Runlists t	o be proc	essed: <u>herr</u>												L	ast upo	late 21/1	1/23			
D_ORCA006 (KM3NeT_00000049)	Priority	runlist - 1	805 runs	Second	lary run	list - 1279	runs														
CCA IN2P3		light	reco dst		light		dst														
								Git	issue wi	ith details:	here		Data/M	C compar	risons:	nere					
Data		140	1786 1786																		
Pure noise		-	1738 1738					E	log with	details: h	ere										
MUPAGE		1805	1805 1805																		
Neutrinos		1805	18051805																		

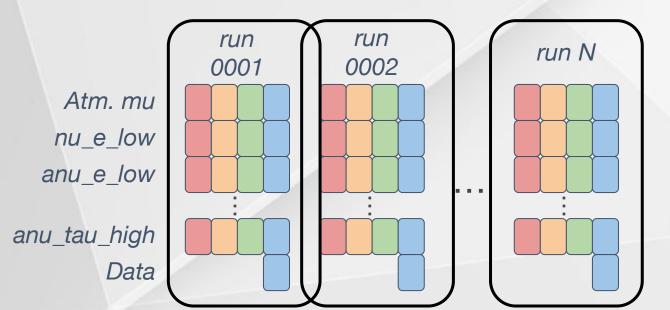
Data processing - General idea

In data processing, **recorded data are reconstructed**, **simulations are produced**, **triggered** according the detector condition by the time of the data taking (Run-by-run) and **reconstructed**. Part of the group task is to verify the "correctness" of the processing and the input by performing a primary **data analysis** (data/MC comparisons etc.).

*Run-by-run approach: using the detector conditions, from a given run for: hit rates (including HRV), detector geometry, PMT efficiency from K40 analysis etc, -> reproducing the run conditions as good as possible.

Simulation chain:

Event generation (atm. muons, neutrinos) -> Light simulation -> Detector response simulation (data conditions) -> Event reconstruction (track, shower)


Data processing - New Workflow - Currently used for the 1st time

Using containerized software:

- Ensuring software versions
- No doubt about other dependencies (e.g. which ROOT version)
- Can also include processing tools used in the path

Using a workflow management system:

- Optimize execution, monitoring performances
- Decouple job submission from workflow implementation
- Take care of logging
- Mutualizes resources, allow for early file merging
- Optimizes disk-space used during processing

Workflow steps:

- Input collection:
 - Raw data (iRods), online detx (DB), offline detx (git)
- Generation:
 - o gSeaGen, MUPAGE
- Trigger:

MC generation

Particles & light propagation

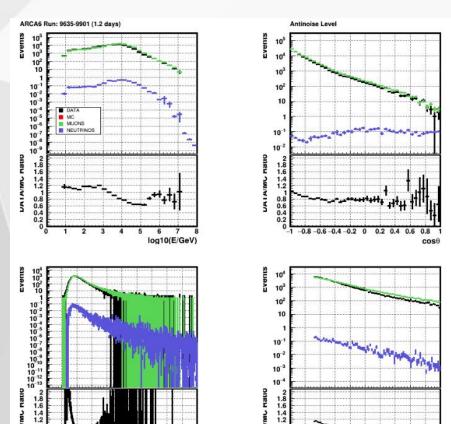
PMT & trigger simulation

Reconstruction(s)

- JTERBR, pure_noise MC
- Reconstruction
- DST files production

Data processing - How to

Simple use: Making a .yaml file containing software needs, input, versions and desired output!

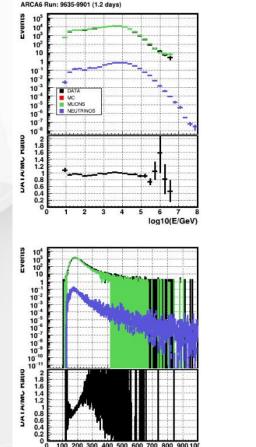


Main advantage: Compatible with multiple Computing Centers -> Optimizes the mass processing procedures.

Processing checks & investigations - optimization of simulations input

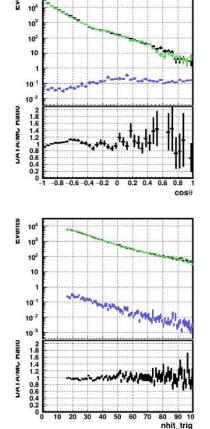
- Comparing distributions of "basic" variables for data and MC.
- Investigated the MUPAGE (atm. muon simulation) parametrization tunings.

nhit_trig


0.8

400 500 600 700 800 900 10

nhit


N

MUPAGE tuning 1

nhit

MUPAGE tuning 2

Important variables compared in the first checks: LogEnergy CosTheta N. of reconstructed hits N. of triggered hits etc.

Mass processing checking tool by C. Distefano

Processing checks & investigations - optimization of simulations input

- Comparing distributions of "basic" variables for data and MC.
- Investigated the MUPAGE (atm. muon simulation) parametrization tunings.

MUPAGE tuning 1

MUPAGE tuning 2

Mu	ons	Neutrinos		
vents				
Data	Muons	Neutrinos		
Data		Muons	Neutrinos	DATA/MC
0.9290	93 3034	1.01224 0.011217	4.53451e-05 3.36642e-05 1.99873e-05 4.6616e-06	0.917853 0.777978
ATA LL	vetime			
Data	Muons	s Neutrino	 S	
151791		4.6904 4 3.47925	••	
	92 21(172 2.4 Data 151791 97269 914 13 Data 1.44988 0.9290(0.0087 0.0001	92 210930 172 2.44132 wents Data Muons 151791 29404 97269 21351 914 2366 13 57 0.013 57 0.00873034 0.00873034 0.000124173	Data Muons Neutrinos 151791 294049 0.69816 97269 213512 0.518314 914 2366 0.307737 13 57 0.0717727 Data Muons 1.44988 1.39406 0.929093 1.01224 0.00873034 0.011217 0.000124173 0.000270232 ATA livetime	92 210930 15396.6 172 2.44132 0.178201 Events Data Muons Neutrinos 151791 294049 0.69816 97269 213512 0.518314 914 2366 0.307737 13 57 0.0717727 Data Muons Neutrinos 1.44988 1.39406 4.53451e-05 0.929093 1.01224 3.36642e-05 0.00873034 0.011217 1.99873e-05 0.000124173 0.000270232 4.6616e-06 MATA livetime

Run processed 6

ivetime ------Units Data Muons Neutrinos

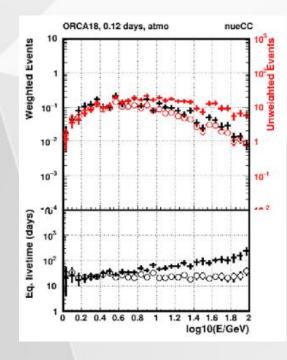
sec 104692 115830 104692 days 1.21172 1.34062 1.21172

Number of events

Level	Data	Muons	Neutrinos
PreCut	154735	163144	7.021
Antinoise	100043	112953	5.08005
Upgoing	864	853	3.23718
Select	5	12	0.453275

Event rates

Level	Data	Muons	Neutrinos	DATA/MC
PreCut	1.478	1.40848	6.70631e-05	1.04935
Antinoise	0.95559	0.975162	4.85236e-05	0.979925
Upgoing	0.00825275	0.00736424	3.09209e-05	1.11992
Select	4.7759e-05	0.0001036	4.32959e-06	0.440653

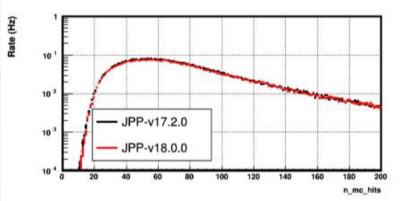

Events in DATA livetime

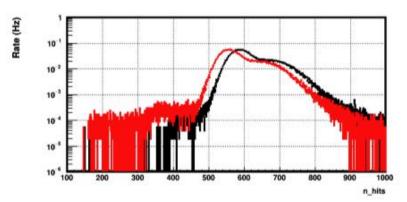
	Data	Muons	Neutrinos
PreCut	154735	148260	7.021
Antinoise			
Upgoing	864	771.342	3.23718
Select	5	10.966	0.453275

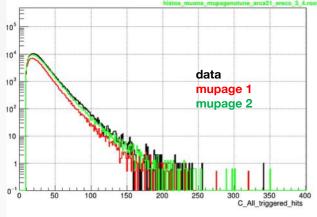
Run list 6 Run processed 6 Important variables compared in the first checks: Data/MC comparisons in different analysis levels. Numbers extrapolated to data livetime. Trigger level is also reported.

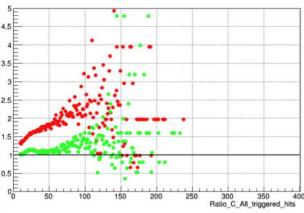
Processing checks & investigations - data/MC comparisons

- Detailed investigations of the processings to be used for physics analyses
- Investigations in different levels (generation, light simulation, reconstruction)
- Plans to include benchmark checks per processing step

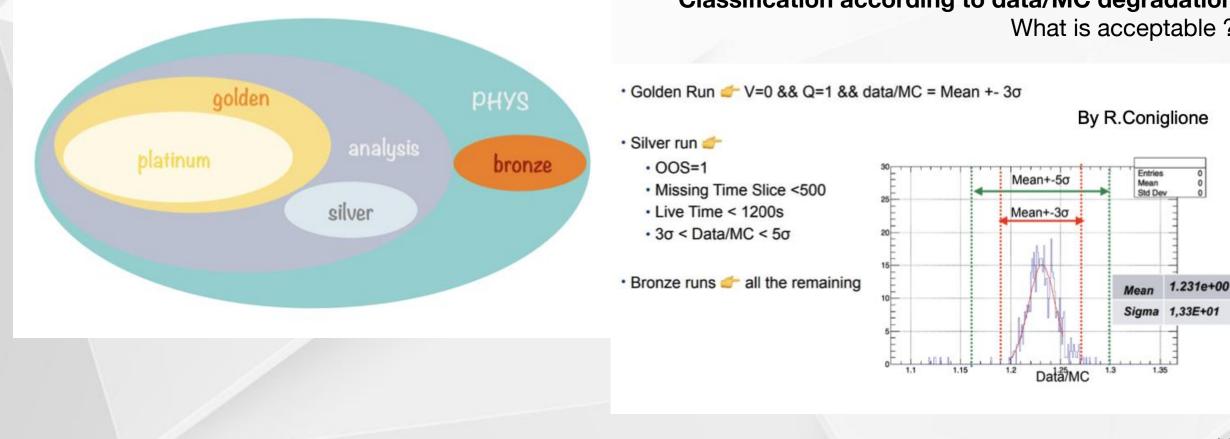

Generation level:


Unweighted/weighted events investigation


Reconstruction level: Comparison of data with 2 different atmospheric muon productions (tunings)


Trigger level:

Comparisons of productions with different software versions

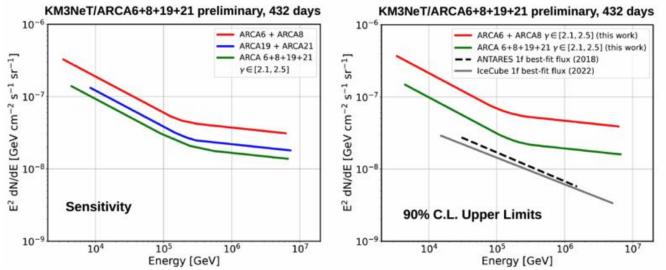


Data quality - "safe" data/MC to be used for physics analyses

- Optimize quality criteria to classify runs that can be used in the analyses physics runlists.
- Data/data comparisons (investigate differences between data-taking periods)

Physics runlists classification scheme

golden, silver etc. lists

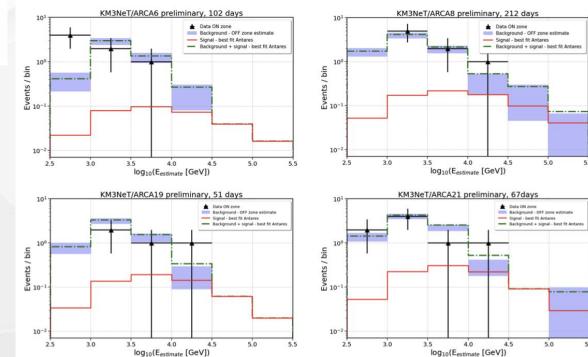


Classification according to data/MC degradation

What is acceptable ?

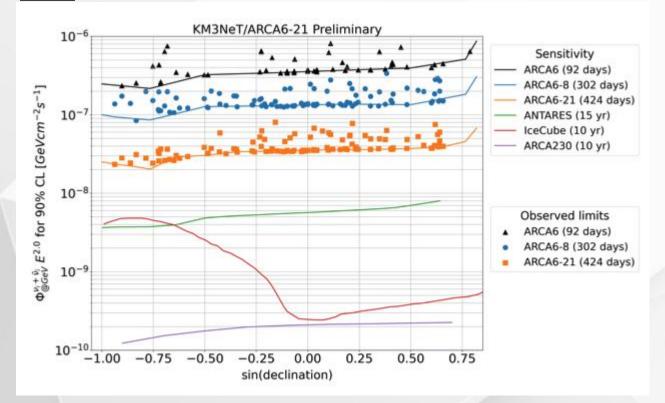
19

Physics data analyses - Astrophysical analyses performed with KM3NeT data



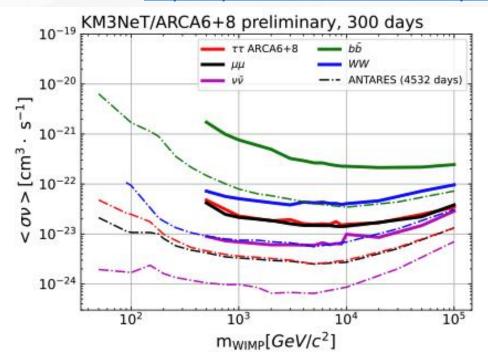
Search for a diffuse astrophysical neutrino flux with KM3NeT/ARCA

https://pos.sissa.it/444/1195/pdf


Search for a diffuse astrophysical neutrino flux from the Galactic Ridge using KM3NeT/ARCA data

20

Physics data analyses - Astrophysical analyses performed with KM3NeT data

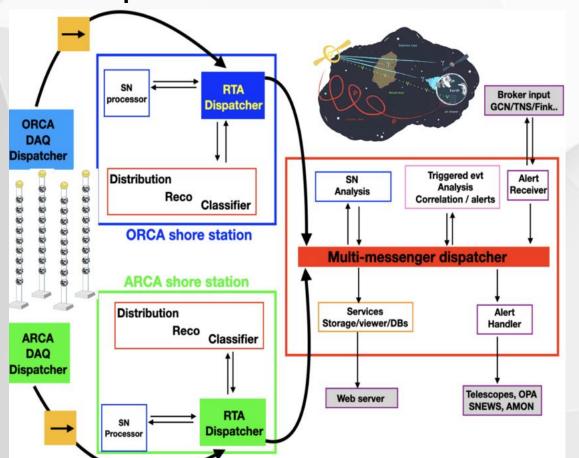

Search for cosmic neutrino point sources and extended sources with 6-21 lines of KM3NeT/ARCA https://pos.sissa.it/444/1018/pdf

and many more to come soon...

KM3NeT upper limits quickly reaching the ANTARES 15yr limits

Indirect Search for Dark Matter with the KM3NeT Neutrino Telescope

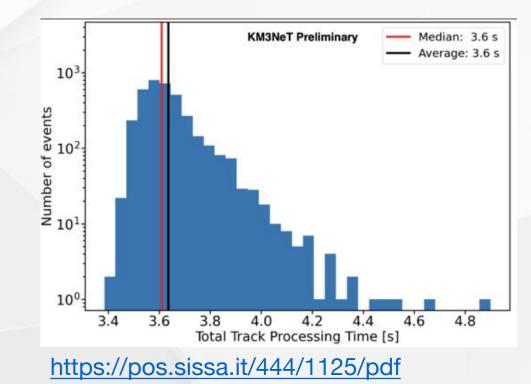
https://pos.sissa.it/444/1377/pdf



Physics data analyses - Multimessenger program

With the Real-Time Analysis platform, we perform:

- Auto-correlation searches
- Follow-up studies


starting automatically whenever an interesting external alert is received

The RTA platform of KM3NeT

By 2024, high-energy neutrino alerts will be sent in real-time!!!

In ARCA21 a median delay of 4 s is obtained from data filtering to classification, including event buffering, dispatching and reconstruction times.

Thank you for your attention!

KM3NeT

A.Sinopoulou

anna.sinopoulou@ct.infn.it

Stay tuned: <u>km3net.org Instagram Twitter Facebook</u>