SIGRAV lecture 4: Test of the Equivalence principle

2/19/25

Vietri, Italy, 2/16/2024 S. Schlamminger National Institute of Standards and Technology

Mass does not add up

rad

He

t de

Mass does not add up

rad

B ng

Ha

Mass does not add up

rad

Mass defect = binding Energy

 $13.6 \text{ eV}/c^2$

Brite

Hä

Binding Energy = $\Delta E_{pot} - \Delta E_{kin}$

The non-linearity is rather small

but occurs also in gravitationally bound systems

Mass defect for 1 kg of Earth: $\Delta m = 0.46$ μg

Mass defect for 1 kg of Moon: $\Delta m = 0.02$ μg

EARTHRISE OVER THE MOON

YEAR: 1969 MISSION: APOLLO 11 TARGET: LUNA

View from the Apollo 11 spacecraft showing the Earth rising above the Moon's horizon.

Physical Me

The mass of an object

 $m = \sum m_c + \sum Ekin/c^2 - \sum Epot/c^2$

rad

Newton's Principia (1689)

Newton's 2nd Law Gravitational Law $F_i = m_i a$ $F_G = G m_{g_1} m_{g_2} / r^2$

Equivalence Principle (EP): $m_i = m_g$

rad

Weak Equivalence Principle: Gravitational binding energy is excluded.

Strong Equivalence Principle: Includes all 4 fundamental interactions.

Searching for New Interactions

Good model fo new interactio	or a n: $V(r) = k Q_1$	$Q_2 \frac{1}{r} e^{-r/\lambda} V_{oral}$	$_{v}(\mathbf{r}) = G \mathrm{m}_{1} \mathrm{m}_{2} \frac{1}{2}$
V(r) = Strength relative to gravity	$\alpha G \left(\begin{array}{c} q_1 \\ \mu_1 \end{array} \right) \left(\begin{array}{c} q_2 \\ \mu_2 \\ \mu_2 \end{array} \right)$ Source Test mass	$\frac{m_1 m_2}{r} e$	$r - r / \lambda$
Assumed charge	Beryllium q/µ	Titanium q/μ	Difference
Baryon number B	0.99868	1.001077	-2.429x10 ⁻³

q/µ

	Mass (u)	q=B	q/µ
¹ ₁ p	1.0073	1	0.992 8
¹ on	1.008 7	1	0.991 4
⁹ ₄ Be	9.101 2	9	0.998 7
⁴⁸ 22Ti	47.9479	48	1.001 1

B/μ varies, because

1st Tests of the Equivalence Principle

2nd Generation Tests

rad

Ha

B ng

Eötvös Experiments

The torsion balance

rad

Dicke's idea

Historical overview

rad

Ha

n h

Principle of our experiment

source mass	λ(m)	
local masses (hill)	1 - 104	
entire earth	10 ⁶ - 10 ⁷	
Sun	10 ¹¹ - ∞	
Milky Way (incl. DM)	10^{20} - ∞	

rad

Hä

e del

The l

В

Hä

EP torsion pendulum

20 µm diameter tungsten fiber (length: 108 cm) K=2.36 nNm

8 test masses (4 Be & 4 Ti) 4.84 g each (within 0.1 mg) (can be removed)

tuning screws for adjusting tiny asymmetries

torsional frequency:	1.261 mHz
quality factor:	4000
decay time:	11d 6.5 hrs
machining tolerance:	5 μm
total mass :	70 g

rad

The upper part of the apparatus

rad

The lower part of the apparatus

Raw-data

rad

Ha

6 de

Filter: $F(t) = \theta(t-T/4) + \theta(t+T/4)$

Data reduction

He

A complete day of data

rad

de la ₿

$$\Delta a = \frac{\kappa}{md}\varphi$$

Some numbers

κ	2.36 x 10 ⁻⁹ Nm
m	4.84 x 10 ⁻³ kg
d	1.9 x 10 ⁻² m

6.41 x 10⁻¹⁵ m/s² / nrad

rad

Can be measured with An uncertainty of 3 nrad per day

Ha

Ha

Data taking sequence (1/3)

Data taking sequence (2/3)

Data taking sequence (3/3)

After a 2 months of data taking and systematic checks we physically invert the dipole on the pendulum and put it back into the apparatus.

rad

Ha

run

Corrected result

	$\Delta a_{N,Be-TI}$	$\Delta a_{W,Be-TI}$
	$(10^{-15} \mathrm{m/s^2})$	$(10^{-15} \mathrm{m/s^2})$
as measured	3.3 ± 2.5	-2.4 ± 2.4
Due to gravity gradients	1.6 ± 0.2	0.3 ± 1.7
Tilt induced	1.2 ± 0.6	-0.2 ± 0.7
Temperature gradients	0 ± 1.7	0 ± 1.7
Magnetic coupling	0 ± 0.3	0 ± 0.3
Corrected	0.6 ± 3.1	-2.5 ± 3.5

Gravity gradients (1/4)

Gravitational potential energy between the pendulum and the source masses is given by

$$w = -4 \pi G \sum_{l=0}^{\infty} \frac{1}{2l+1} \sum_{m=-l}^{l} Q_{lm} q_{lm} e^{-im\phi}$$

$$Q_{lm} = \int d^3 r' \rho_{source}(\vec{r}') r'^{-(l+1)} Y_{lm}(\hat{r}') \quad \text{gravity gradient field}$$
$$q_{lm} = \int d^3 r \rho_{pend}(\vec{r}) r^l Y_{lm}^{*}(\hat{r}) \quad \text{gravity multipole moment}$$

.

Torque for 1
$$\omega$$
 (m=1) signal: $\tau = 8 \pi G \frac{1}{2l+1} |q_{l1}| |Q_{l1}|$
 q_{11} q_{21} q_{21} q_{31} q_{31}

Gravity gradients (2/4)

rad

Ha

n e

Gravity gradients (3/4)

He

rad

Ha

t de

日園

Tilt of the suspension point + <u>an</u>isotropies of the fiber will rotate

Hä

Tilt of the suspension point + <u>an</u>isotropies of the fiber will rotate

Thermal

WE-signal (nrad)

Effect on the applied gradient on the signal (measurement was done on one mirror):

Interpreting our result

North:	a_{Be} - a_{Ti} = (0.6 ± 3.1) x 10 ⁻¹⁵ m/s ²
West:	a_{Be} - a_{Ti} = (-2.5 ± 3.5) x 10 ⁻¹⁵ m/s ²

He

Interpreting our result

North: $a_{Be}-a_{Ti}=(0.6 \pm 3.1) \times 10^{-15} \text{ m/s}^2$ West: $a_{Be}-a_{Ti}=(-2.5 \pm 3.5) \times 10^{-15} \text{ m/s}^2$

Interpreting our result

North: $a_{Be}-a_{Ti} = (0.6 \pm 3.1) \times 10^{-15} \text{ m/s}^2$ West: $a_{Be}-a_{Ti} = (-2.5 \pm 3.5) \times 10^{-15} \text{ m/s}^2$

Results

Acceleration to the center of our galaxy

1825 h of data taken over 220 days

rad

Ha

E ne

rad

Ha

t de

rad

THE

В

Ha

rad

Our acceleration towards the galactic center is:

$$a_{gal} = a_{dark} + a_{ordinary} = 1.9 \times 10^{-10} \text{ m/s}^2 = a_{dark} = 5 \times 10^{-11} \text{ m/s}^2$$

Our acceleration towards the galactic center is:

 $a_{gal} = a_{dark} + a_{ordinary} = 1.9 \times 10^{-10} \text{ m/s}^2 => a_{dark} = 5 \times 10^{-11} \text{ m/s}^2$

Measured differential acceleration towards the galactic center is: $\Delta a_{gal} = (-2.1 \pm 3.1) \times 10^{-15} \text{ m/s}^2 \Rightarrow \eta_{dark} = |\Delta a_{gal}|/a_{dark} = (-4\pm7) \times 10^{-5}$

rad

Our acceleration towards the galactic center is:

 $a_{gal} = a_{dark} + a_{ordinary} = 1.9 \times 10^{-10} \text{ m/s}^2 = a_{dark} = 5 \times 10^{-11} \text{ m/s}^2$

Measured differential acceleration towards the galactic center is: $\Delta a_{gal} = (-2.1 \pm 3.1) \times 10^{-15} \text{ m/s}^2 \implies \eta_{dark} = |\Delta a_{gal}|/a_{dark} = (-4 \pm 7) \times 10^{-5}$

The acceleration of Be and Ti towards dark matter does not differ by more than 150 ppm (with 95 % confidence).

rad

Summary

- Test of the equivalence principle with a rotating torsion balance.
- Principle of the measurement
- Main systematic effects
- Results
 - Earth fixed (North): $a_{Be}-a_{Ti}=(0.6 \pm 3.1) \times 10^{-15} \text{ m/s}^2$.
 - η=(0.3 ± 1.8) x 10⁻¹³.
 - Towards Galaxy: $a_{Be}^{-}-a_{Ti}^{-}=(-2.1 \pm 3.1) \times 10^{-15} \text{ m/s}^2$.

rad

- $\eta_{DM} = (-4 \pm 7) \times 10^{-5}$.
- 10x improved limits on a long range interaction.