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Let’s use one mass as a sensor. For example, suppose we measure the acceleration on mass 𝑚1, we find:

𝑎1 =
𝐹

𝑚1
= 𝐺

𝑚2

𝑟2

The measurement is independent of 𝑚1. 
𝐺 =

𝑎1𝑟
2

𝑚2

A good way to memorize the units of G
m/s^2 × m^2/kg



IRL = In real Life

𝜙𝑐𝑐𝑤 = 𝜙𝑜 +
Γ𝐺

𝜅

𝜙𝑐𝑤 = 𝜙𝑜 −
Γ𝐺

𝜅

Δ𝜙 = 2
Γ𝐺

𝜅
Γ = 35 𝑀 𝑚

𝑟4

𝑅5

𝜔2 =
𝜅

𝐼

𝜅 =
4𝜋2

𝑇0
2 (4 𝑚 𝑟2 + 𝐼𝑑𝑖𝑠𝑘)

Δ𝜙 = 70
𝐺 𝑀𝑚 𝑟4

𝜅 𝑅5

𝐺 =
16𝜋2

𝑇0
2

𝑅5

70 𝑀 𝑟2
1 +

𝐼𝑑𝑖𝑠𝑘
4𝑚𝑟2

Δ𝜙

Here: 
𝐼𝑑𝑖𝑠𝑘
4𝑚𝑟2

≈ 0.11

Depends on 𝑚

Weakly dependent on m



Another example: Jens’ Gundlach’s exp.

w

t

J.H. Gundlach & S.M. Merkowitz
PRL 85, 2869 (2000).



He measured angular acceleration

𝛼 𝜙 =
4𝜋𝐺

𝐼
෍

𝑙=2

∞
1

2𝑙 + 1
෍

𝑚=−𝑙

𝑙

𝑚 𝑞𝑙𝑚𝑄𝑙𝑚 𝑒𝑖𝑚𝜙

With:

𝐼: moment of inertia of the pendulum
𝑞𝑙𝑚: Inner multipole moments – of the pendulum 
𝑄𝑙𝑚: Outer multipole moments – of the source mass assembly 

𝑞𝑙𝑚 = න𝜌𝑝 Ԧ𝑟 𝑟𝑙𝑌𝑙𝑚
∗ ( Ƹ𝑟) 𝑑3𝑟 𝑄𝑙𝑚 = න𝜌𝑝 Ԧ𝑟 𝑟−𝑙−1 𝑌𝑙𝑚

∗ Ƹ𝑟 𝑑3𝑟



Advantage of a thin plate

For a two-fold symmetry, the leading term is the quadrupole moment

𝑞22
𝐼
=
𝜌𝑝׬

15
32 𝜋 (𝑥

2 − 𝑦2) d𝑥 d𝑦 d𝑧

׬ 𝜌𝑝 𝑥2 + 𝑦2 d𝑥 d𝑦 d𝑧

𝛼22 𝜙 =
16𝜋𝐺

5 𝐼

𝑞22
𝐼

𝑄22 sin(2𝜙)

Employing a thin vertical plate with homogenous density, we obtain

w

t

If  𝑦2 ≪ 𝑥2, i.e. 𝑡 ≪ 𝑤:

𝑞22
𝐼
=

15

32 𝜋
𝛼22 𝜙 ≈ 4

3

10 𝜋
𝐺 𝑄22 sin(2𝜙)

More precisely:
𝑞22

𝐼
=

15

32 𝜋
(1 − 2

𝑡2

𝑤2)

In JHG’s experiment:
𝑡 = 1.5 mm,𝑤 = 76 mm

Hence the relative correction is

8 × 10−4



Let’s look at the source mass

C. Rothleitner and SS, Invited Review Article: Measurements of the Newtonian constant of gravitation, G,

Review of Scientific Instruments 88, 111101 (2017).



Three qualities of the source mass

In general, three decisions need to be made when it 
comes to the source mass:

• The material
• Density
• Homogeneity
• Magnetic properties 

• The size
• The shape



Density is important

For a spherical mass, the field is

𝑎𝑟 = −𝐺
𝑀

𝑟2

So why does the density matter?
Because you can get closer. Suppose, 𝑟m𝑎𝑥 is the largest 
distance from the CM that one is willing to go. Then the most signal 
one can generate is

𝑎𝑟 = −𝐺

𝜌4
3 𝑟𝑚𝑎𝑥

3

𝑟𝑚𝑎𝑥
2 = −

4

3
𝜌𝐺 rmax

Note the dimensionality here:
Acceleration = G times density times radius



For a cylinder

ℎ

𝑟

𝑎𝑧 0,0, 𝑧 = −2𝜋 𝜌 𝐺 ℎ + 𝑟2 + ℎ/2 − 𝑧 2 − 𝑟2 + ℎ/2 + 𝑧 2

From a previous experiment:

𝜌𝑎 = 13 600 kg/m3 mercury
ℎ𝑎 = 64 cm
𝑟𝑎 = 49.5 cm

Suppose we would change the material from mercury to water and keep
The same height. 
𝜌𝑏 = 𝜌𝑎/13.6 water
ℎ𝑏 = ℎ𝑎
𝑟𝑏 ≈ 13.6 𝑟𝑎

Look how much mass we need to generate the same gravitational acceleration:

𝑚 = 𝜌 𝑟2𝜋 ℎ

Hence, 
𝑚𝑏 ≈ 13.6 𝑚𝑎 For mercury: 6.8 tons for water:  92 tons

x

y

z 𝑧 ≈ ℎ



We agreed on high density, but what else?

Material Density kg/m^3

Osmium 22 570

Iridium 22 420

Platinum 21 450

Rhenium 21 020

Plutonium 19 840

Gold 19 320

Tungsten 19 300

Uranium 19 100

Tantalum 16 600

Mercury 13 564

Material Density kg/m^3

Rhodium 12 410

Thorium 11 700

Lead 11 340

Silver 10 500

Molybdenum 10 220

Copper 8 940

Cobalt 8 900

Nickel 8 900

Cadmium 8 650

Brass 8 600

In red font: refractory metals => very high melting point, above 1850oC.  The materials are not made via melting,
but sintering. Hence, the density homogeneity is not that great.
In blue and italics: Not practical for other reasons (radioactive, poisonous).



PbWO4 Lead Tungstate – a promising material  

K T A Assumin-Gyimah et al. Neutron 

phase contrast imaging of PbWO4

crystals for G experiment test masses 

using a Talbot-Lau neutron 

interferometer 2022 Class. Quantum Grav. 
39 245014

Crystals are made for scintillators in particle
detectors. They are optically clear and have
a density of 8 300 kg/m3



Lead Tungstate

K T A Assumin-Gyimah et al. Neutron phase contrast imaging of PbWO4 crystals for G experiment test masses

using a Talbot-Lau neutron interferometer 2022 Class. Quantum Grav. 39 245014

Result: 
1

𝑁

𝑑𝑁

𝑑𝑥
< 0.5 × 10−6cm−1

Fractional atomic density gradient.



An example experiment

17

𝑚 1.2 kg

𝑟 120 mm

𝜅 204 μN m

𝐼𝑑 745 g dm2

ൗ
𝐼𝑑

(4𝑚 𝑟2)
0.11

𝑇𝑜 121 s

𝑀 11.2 kg

𝑀 5.0 kg

𝑅 240 mm

2𝑟

𝑚

𝑚

𝑚

𝑚

2𝑅

𝑀 𝑀

𝑀
𝑀

𝜅

𝐼𝑑



Other ways to reduce the effect of gradients

x

y
R Δ𝑦 = −

𝑅Δ𝜌

4 𝜌0

gradient points down to make it stable in air bearing

𝐼 ሷ𝜃 − 𝑀𝑔Δ𝑦𝜃 = 0

𝜔2 = −
𝑀𝑔Δ𝑦

𝐼
=
4𝜋2

𝑇2

𝐼 =
1

2
𝑀𝑅2 does not depend on 𝛿𝜌

Δ𝜌

𝜌0
=

8𝜋2𝑅

𝑇2𝑔

# T (s) 𝚫𝝆

𝝆𝟎
× 𝟏𝟎𝟔

𝜶

1 68.0 102.7 159

2 58.8 137.3 -15

3 54.5 159.9 159

4 44.7 237.6 140

no dot

one dot

two dot

𝛼

angle between
the line that connects
the geometric center to
the no dot mark and the
direction of maximum
density.

Measure it in an air bearing:



Average over different orientations

Here, the source masses were rotated. The measurements
Were done in three orientations.
The mean value is independent of the gradient.



Magnetic properties
The magnetic force on the test mass in the z direction is given by

𝐹 = −
𝜇𝑜
2

𝜕

𝜕𝑧
׬ 𝜒 𝐻 ⋅ 𝐻 d𝑉 − 𝜇𝑜

𝜕

𝜕𝑧
𝑀׬ ⋅ 𝐻 d𝑉

So for the test mass it’s important to have a small magnetic susceptibility 𝜒. In the above equation the volume magnetic 
susceptibility is used, sometimes abbreviated as 𝜒𝑉

𝜒 > 0 the material is paramagnetic => the force is towards larger 𝐻 ⋅ 𝐻. 

𝜒 < 0 the material is diamagnetic => the force is towards smaller 𝐻 ⋅ 𝐻. 

Material 𝚾𝐕

Aluminum 2.2 × 10−5

Silver −2.3 × 10−5

Copper −9.6 × 10−6

Nickel 600

Iron 200 000



Source mass material properties

• Large density
• No permanent magnetic moment

• Low 𝜒 is desired but not required – as long as the ambient 𝐻 field is small.
• Low thermal expansion coefficient => for position and size measurements.
• Low vapor pressure if inside vacuum.
• Conductive or possibly gold coated, absent any electrostatic shield
• Machineability and measurability (ground and polished, diamond turned)



Shapes - sphere

• A single dimension radius 𝑅. No fillets.
• Easy to calculate 𝑎𝑟 = 𝐺 𝑀 /𝑟2 for 𝑟 > 𝑅
• Easy to manufacture by random orbit grinding. See for example 

ball bearings.
• Supporting the sphere can be hard.



Shapes - cylinder

ℎ

𝑟

x

y

z

• Two dimensions, height ℎ and radius 𝑟
• Fillets on two circles.
• Easy to machine ( turned on a lathe).
• Stands on a surface.
• Field along the axis is easy to calculate, see below

𝑎𝑧 0,0, 𝑧 = −2𝜋 𝜌 𝐺 ℎ + 𝑟2 + ℎ/2 − 𝑧 2 − 𝑟2 + ℎ/2 + 𝑧 2



A.H. Cook and Y.T. Chen, On the significance of the radial Newtonian gravitational 
force of the finite cylinder, J. Phys. A: Math. Gen. 15,1591  (1982).

Without loss in generality, they calculate the horizontal force on a point in the 
plane of the bottom of the cylinder.

The radial field

Elliptical integral
of the 1st kind

Elliptical integral
of the 3rd kind

Elliptical integral
of the 2nd kind

Chen and Cook find
For the optimal shape:
2𝑅

𝐿
=1.029282

Better gravitational 
efficiency than 
for a sphere



The hollow cylinder

ℎ

𝑟2

x

y

z

𝑟1

• Three dimensions, height ℎ, inner, 𝑟1 and outer 
radius 𝑟2

• Fillets on four circles.
• Easy to machine ( turned on a lathe).
• Stands on a surface.
• Fields can be calculated from two cylinders,

i.e. subtracting a cylinder with density −𝜌 from 
one with 𝜌

On axis:
𝑎𝑧 0,0, 𝑧 = −2𝜋 𝜌 𝐺 𝑅2+ − 𝑅2− + 𝑅1+ − 𝑅1− with 𝑅1,2± = 𝑟1,2

2 + 𝑧 ±
ℎ

2

2



The hollow cylinder

ℎ

𝑟2

x

y

z

𝑟1

On axis:
𝑎𝑧 0,0, 𝑧 = −2𝜋 𝜌 𝐺 𝑅2+ − 𝑅2− + 𝑅1+ − 𝑅1− with 𝑅1,2± = 𝑟1,2

2 + 𝑧 ±
ℎ

2

2

Maximum near the end of the cylinder.



The hollow cylinder

ℎ

𝑟2

x

y

z

𝑟1

gravitational potential Φ 𝑟, 𝜙, 𝑧 with 𝑎𝑧 =
𝜕Φ

𝜕𝑧

We note: 𝛻2Φ 𝑟, 𝜙, 𝑧 =0
In a cylindrical coordinates:

1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕Φ

𝜕𝑟
+
1

𝑟2
𝜕2Φ

𝜕𝜙2 +
𝜕2Φ

𝜕𝑧2
= 0

0 for cylindrical symmetry

Near the axis of symmetry, the potential can be developed

Φ 𝑟, 𝜙, 𝑧 = bo + b1r + b2r
2 + b3r

3+. . = σ𝑏𝑖 𝑟
𝑖

Applying the Laplacian yields

𝑏1𝑟
−1 + σ𝑟𝑖

𝜕2𝑏𝑖
𝜕𝑧2

+ 𝑖 + 2 2𝑏𝑖+2 = 0

0 for symmetry



The hollow cylinder

ℎ

𝑟2

x

y

z

𝑟1

σ𝑟𝑖
𝜕2𝑏𝑖
𝜕𝑧2

+ 𝑖 + 2 2𝑏𝑖+2 = 0

This equation has to be true independent of r

𝑏𝑖+2 = −
1

𝑖 + 2 2

𝜕2𝑏𝑖
𝜕𝑧2

Let’s use the following abbreviation:

𝑉 = 𝜙(0,0, 𝑧)

𝑏0 = 𝑉

𝑏2 = −
1

4

𝜕2𝑉

𝜕𝑧2

𝑏4 =
1

64

𝜕2𝑉

𝜕𝑧4 ….



The hollow cylinder

ℎ

𝑟2

x

y

z

𝑟1



The principle of the experiment
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The principle of the experiment

time

time
b

al
an

ce
 r

ea
d

in
g

U
p

p
er

 T
M

 –
Lo

w
er

 T
M

Pos. A Pos. T Pos. A

amplitude of the 
signal 785 μg

Mass integration

Measured with a rel. uncertainty of 6.1 x 10-8 (E. Klingelé, ETHZ)



Layered thermal shielding

Mass Comparator 
Mettler Toledo AT1006

Granite base plate

Upper test mass 
1.1 kg copper cylinder

Field mass
800 kg stainless vessel
6760 kg mercury

Vacuum tube

Lower test mass 
1.1 kg copper cylinder

Vacuum bell jar 
10-6 mbar = 10-4 Pa

Spindle to move field mass

Experiment was located at the
Paul Scherrer Institute (PSI)



one vessel, after mostly 
emptying the mercury

orings
central tube

bottom plate

ground surface

one of three brackets  each holding a 
recirculating ball nut.



One of 395 flasks of mercury used to 
fill the tank.

The mercury vapor concentration was 
monitored with gas detection tubes.



The mercury was leased. After the experiment, it 
was shipped back to the mine

1 2

3 4



Weighing the mercury
• F. Nolting and J. Schurr have done an excellent job weighing 

the mercury. 
• The mercury was delivered in 395 flasks. 
• Each flasks was weighed before and after the mercury was 

transferred to the vessel.
• A dedicated calibration weight was made for this task.

Type of uncertainty Upper Vessel (g) Lower Vessel (g)

(g) (10-6) (g) (10-6)

Loss of mercury and residue from flasks 8.0 1.2 11.0 1.6

Approximate equation 7.0 1.0 8.0 1.2

Mass variation of flasks 4.0 0.6 4.0 0.6

Uncertainty of calibration weights 3.7 0.5 3.7 0.5

Buoyancy correction 1.2 0.2 1.2 0.2

Weighing statistics 0.4 0.1 0.4 0.1

Total uncertainty 12.0 1.8 15.0 2.2



Over constraint system

2r

2R

h

m

Least square adjustment (LSA) with constraint:

Measured to 3x10-6 Measured to 2.2x10-6

Measured to 18.1x10-6

Measured to 18.3x10-6

Measured to 36.9x10-6

LSA with mercury density reduced the uncertainty of the mass 
integration by a factor 7.



Mass integration

• Both vessels were broken up in 1200 objects.
• Most object were simple, rotational symmetric 

shapes with rectangular, triangular, or circular cross 
section.

• Positive density, where there was material, negative 
density where material was removed (threaded 
holes, O-ring grooves,…).

• 90 % of the signal was due to mercury and 10 % of 
the signal due to the vessel.

• The total mass integration was done at least twice.
.



Center of mass

Center of mass of the FMs remains at the same position:
• No effect due to tilt or other coupling to the floor.
• Only a small motor needed to move FMs. Not much heat generated.

Symmetry & Geometry
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2𝑟

𝑚

𝑚

𝑚

𝑚

2𝑅

𝑀 𝑀

𝑀
𝑀

𝜅

𝐼𝑑



Δ𝑁

𝑁
= 53.5 × 10−6

Δ𝑧

mm

2

− 107 × 10−6
Δ𝑟

mm

2
The radius of each mass assembly has to 
be measured with high precision, 
but not the relative positions!



Multipole Formalism 1

x

y

z Ԧ𝑟

P

𝑟′

𝜌(𝑟′)

𝑉 Ԧ𝑟 = 𝐺 ම
𝜌(𝑟′)

| Ԧ𝑟 − Ԧ𝑟′|
𝑑𝑉′

Ԧ𝑟 − Ԧ𝑟′ = 𝑟2 − 2Ԧ𝑟 Ԧ𝑟′ + 𝑟′2

Ԧ𝑟 − Ԧ𝑟′ = 𝑟 1 − 2
Ƹ𝑟

𝑟
Ԧ𝑟′ +

𝑟′

𝑟

2

Binomial expansion
1

1 − 2
Ƹ𝑟
𝑟
Ԧ𝑟′ +

𝑟′

𝑟

2
≈ 1 −

Ƹ𝑟

𝑟
Ԧ𝑟′ +

1

2𝑟2
(𝑟′2 − 3 Ƹ𝑟𝑟′

2
+ 𝑂

𝑟′

𝑟

3



Multipole Formalism 2

x

y

z Ԧ𝑟

P

𝑟′

𝜌(𝑟′)

𝑉 Ԧ𝑟 = 𝐺 ම
𝜌(𝑟′)

| Ԧ𝑟 − Ԧ𝑟′|
𝑑𝑉′

𝑉 Ԧ𝑟 ≈
𝐺

𝑟
ම𝜌(𝑟′) 1 −

Ƹ𝑟

𝑟
Ԧ𝑟′ +

1

2𝑟2
(𝑟′2 − 3 Ƹ𝑟𝑟′

2
+ 𝑂

𝑟′

𝑟

3

𝑑𝑉′

𝑉 Ԧ𝑟 ≈ 𝑉𝑚𝑜𝑛 Ԧ𝑟 + 𝑉𝑑𝑖𝑝 Ԧ𝑟 + 𝑉𝑞𝑢𝑎𝑑 Ԧ𝑟 + ⋯

𝑉𝑚𝑜𝑛 Ԧ𝑟 =
𝐺

𝑟
ම𝜌(𝑟′) 𝑑𝑉′

𝑉𝑑𝑖𝑝 Ԧ𝑟 = −
𝐺

𝑟2
ම𝜌 𝑟′ ( Ƹ𝑟 Ԧ𝑟 )𝑑𝑉′

𝑉𝑞𝑢𝑎𝑑 Ԧ𝑟 =
𝐺

2 𝑟3
ම𝜌 𝑟′ (𝑟′2 − 3 Ƹ𝑟𝑟′

2
)𝑑𝑉′



For a torsion pendulum 1



For a torsion pendulum 2

gravity gradient moment

gravity gradient fields



𝑞41

𝑞21



gravity gradient 

compensators



Qlm and qlm



Thanks

Thanks for listening to the source mass lecture!

Questions?


