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Newton’s law is symmetric




Newton’s law is symmetric

mim; mim,
F=G > F=G >
r r

Let’s use one mass as a sensor. For example, suppose we measure the acceleration on mass m,, we find:

The measurement is independent of m;. m,

A good way to memorize the units of G
m/s"2 X m"2/kg
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Another example: Jens” Gundlach’s exp.
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J.H. Gundlach & S.M. Merkowitz
PRL 85, 2869 (2000).



He measured angular acceleration
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With:

I: moment of inertia of the pendulum
q1m: Inner multipole moments — of the pendulum
Qym: Outer multipole moments — of the source mass assembly

Gim = [ £y @@ @ Oum = [ I () r



Advantage of a thin plate

For a two-fold symmetry, the leading term is the quadrupole moment

l16mG Y
51 1

a2 (P) =

Q22 sin(2¢) t

Employing a thin vertical plate with homogenous density, we obtain

15 , W
T2z fpp 327T(x —y°) dxdydz /
I [p,(x2+y?)dxdydz =
More precisely: i
T Tz 25

If 2 K x%,ie.t K w:

In JHG’s experiment:
t=15mmw = 76 mm

422 15 > 3 :
— = |— a ~ 4 |—— G sin(2 i PR
I 32 17 22(9) ,10 T Q22 sin(2¢) Hence the relative correction is

8x 107%




Let’s look at the source mass

TABLE III. Field masses used in determinations of . Adapted from Ref. 133.

Field mass (total) (kg) Material Geometry Measurement principle References
1.6 Stainless steel Spheres Torsion balance 57
21 Tungsten Spheres Torsion balance 50
33 Stainless steel Spheres Torsion balance 53
45 Cu 0.7% Te Cylinders Torsion balance 72
118 Copper Rings Torsion balance 59
480 Tungsten Cylinders Double pendulum 103
516 Tungsten Cylinders Atom gravimeter 132
521 Tungsten alloy Cylinders Free-fall gravimeter 118
1152 Brass Cylinders Double pendulum 102
STIS Lead Sphere Beam balance 106
13520 Mercury Cylinder tank Beam balance 114
100000 Lead Rectangular block Beam balance 109

C. Rothleitner and SS, Invited Review Article: Measurements of the Newtonian constant of gravitation, G,

Review of Scientific Instruments 88, 111101 (2017).



Three qualities of the source mass

In general, three decisions need to be made when it
comes to the source mass:

* The material

* Density

* Homogeneity

* Magnetic properties
* The size
* The shape



Density is Important

For a spherical mass, the field is

M
a, = _Gr_z

So why does the density matter?

Because you can get closer. Suppose, 1,4, 1S the largest

distance from the CM that one is willing to go. Then the most signal
one can generate is
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Note the dimensionality here:
Acceleration = G times density times radius



For a cylinder

a,(0,0,z) = -2npG (h +r2+ (/2 —2)2 —r2 + (h/2 + Z)Z)

From a previous experiment:

p, = 13600 kg/m3 mercury
h, = 64 cm
7, = 49.5 cm

Suppose we would change the material from mercury to water and keep
The same height.
Py = pg/13.6 water
X h, = h,
T, = 13.6 1,

v

Look how much mass we need to generate the same gravitational acceleration:
_ 2
m= pr°mh

Hence,
my = 13.6 m,; For mercury: 6.8 tons for water: 92 tons



We agreed on high density, but what else? NIST
Waterial | Density kg/m"3__ Waterial | Density kg/m"3

Osmium 22 570 Rhodium 12 410
Iridium 22 420 Thorium 11 700
Platinum 21450 Lead 11 340
Rhenium 21 020 Silver 10 500
Plutonium 19 840 Molybdenum 10 220
Gold 19 320 Copper 8 940
Tungsten 19 300 Cobalt 8 900
Uranium 19 100 Nickel 8 900
Tantalum 16 600 Cadmium 8 650
Mercury 13 564 Brass 8 600

In red font: refractory metals => very high melting point, above 1850°C. The materials are not made via melting,
but sintering. Hence, the density homogeneity is not that great.
In blue and italics: Not practical for other reasons (radioactive, poisonous).



PoWO, Lead Tungstate — a promising material njsr

KT A Assumin-Gyimah et al. Neutron
phase contrast imaging of PbwWO,
crystals for G experiment test masses
using a Talbot-Lau neutron
interferometer 2022 Class. Quantum Grav.
39 245014

Crystals are made for scintillators in particle
detectors. They are optically clear and have
a density of 8 300 kg/m?3




Lead Tungstate

Table 1. List of non-hygroscopic, optically-transparent, high-density crystals and their
physical properties.

Material PbWO4 CdW0O, LSO LYSO BGO
Density (gem™) 8.3 7.9 7.4 7.3 7.13
Atomic numbers 82,74,8 48,74,8 71,32, 8 71,39,32.8 83,32,8
Refractive index (light) 2.2 2.2-2.3 1.82 1.82 2.15
Thermal expansion 8.3 (para) 10.2 3 5 7

Coefficient(s) (107°°C~") 19.7 (perp) — — - =

Result: = <« 0.5 x 10~6cm™1

\Ndp
Fractional atomic density gradient.

KT A Assumin-Gyimah et al. Neutron phase contrast imaging of PbWO, crystals for G experiment test masses
using a Talbot-Lau neutron interferometer 2022 Class. Quantum Grav. 39 245014



An example experiment




Other ways to reduce the effect of gradients pisT

gradient points down to make it stable in air bearing

Measure it in an air bearing: . 1
16— MgAyd =0 I = EMRZ does not depend on §p
RAp
Ay = — 1o , MgAy  4m?
Po WE = E one dot
Ap  8m°R ®
I Po T?g
a \“
T(s) O} no dot
po angle between
1 680 102.7 the line that connects
the geometric center to
2| esd | Ions e the no dot mark and the
3 545 1599 159 direction of maximum
4 447 2376 140 density. ®e
two dot



Average over different orientations

0.6748 -

6.6746 |

10 11 m?rkg - 15—2)

!

G

6.6740 |

6.6744 -

= 6.6742 -

s
.

Cu Cavendish

Sa Cavendish

120° 240° Sapphire
rotation angle of each mass /deg

Here, the source masses were rotated. The measurements
Were done in three orientations.
The mean value is independent of the gradient.



Magnetic properties

The magnetic force on the test mass in the z direction is given by

Ko O S Jd . - -
F = zazfXH H dv anZfM H dv

So for the test mass it’s important to have a small magnetic susceptibility y. In the above equation the volume magnetic

susceptibility is used, sometimes abbreviated as yy
Material | Xy

RN Aluminum 2.2x107°
¥ >0  the material is paramagnetic => the force is towards larger H - H. 0
Silver —23x%x107°
¥ <0 the material is diamagnetic => the force is towards smaller H-H. Copper —9.6 x 107°
Nickel 600

lron 200 000



Source mass material properties

e Large density
* No permanent magnetic moment

* Low y is desired but not required — as long as the ambient H field is small.
* Low thermal expansion coefficient => for position and size measurements.
* Low vapor pressure if inside vacuum.

e Conductive or possibly gold coated, absent any electrostatic shield

* Machineability and measurability (ground and polished, diamond turned)



Shapes - sphere

* A single dimension radius R. No fillets.

e Easy to calculatea, = G M /r* forr > R

* Easy to manufacture by random orbit grinding. See for example
ball bearings.

e Supporting the sphere can be hard.




Shapes - cylinder

* Two dimensions, height h and radius r

* Fillets on two circles.

e Easy to machine ( turned on a lathe).

e Stands on a surface.

* Field along the axis is easy to calculate, see below

a,(0,0,z) =-2mpG (h +r2 4+ (h/2 —2)2 —r2 + (h/2 + z)z)



The radial field

A.H. Cook and Y.T. Chen, On the significance of the radial Newtonian gravitational
force of the finite cylinder, J. Phys. A: Math. Gen. 15,1591 (1982).

Without loss in generality, they calculate the horizontal force on a point in the
plane of the bottom of the cylinder.

()

EEC}(L, R,a)
2 ~ L*
av1+{(R+a)/LT +V1+[(R-a)/LT
N % . R’+a’ f 2oV s R’+a’
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Figure 1. L



The hollow cylinder NIST

* Three dimensions, height h, inner, r; and outer
radius 7,

* Fillets on four circles.

e Easy to machine ( turned on a lathe).

e Stands on a surface.

* Fields can be calculated from two cylinders,
l.e. subtracting a cylinder with density —p from
one with p

On axis:

2
aZ(O,O, Z) = _277:,0 G (R2_|_ - Rz_ + R1+ - Rl—) with Rl,Zi = \/le’z + (Z i %)



The hollow cylinder

Maximum near the end of the cylinder.

On axis:

2
aZ(O,O, Z) = _277:,0 G (R2_|_ - Rz_ + R1+ - Rl—) with Rl,Zi = \/le’z + (Z i %)



The hollow cylinder

oD

gravitational potential ®(r, ¢, z) with a, = =,

We note: V2®(r, ¢, z) =0
In a cylindrical coordinates:

10 < 6(1)) 1 0%d 0%
— — 7"_ ju—
ar

O for cylindrical symmetry

Near the axis of symmetry, the potential can be developed
®(r,¢,z) = b, + byr + byr? + bar3+..= Y b; 1!

Applying the Laplacian yields
2

(82D
bl + Y7t (67;+(i+2)2bi+2) =0

0 for symmetry



The hollow cylinder

d0z2

. (0%b;
ZT‘l <—l + (l + Z)Zbi+2 > =0

This equation has to be true independent of r

— 1 0°b;
2 7 (i 42)2 922

Let’s use the following abbreviation:

V=¢(00,2z2)

bO - V
. 10%V
27 40972
1 0%V

NP



The hollow cylinder
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The principle of the experiment
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The principle of the experiment
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The principle of the experiment
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The principle of the experiment
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The principle of the experiment
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The principle of the experiment
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Measured with a rel. uncertainty of 6.1 x 108 (E. Klingelé, ETHZ)
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Experiment was located at the
Paul Scherrer Institute (PSI)







One of 395 flasks of mercury used to
fill the tank.




The mercury was leased. After the experiment, it
was shipped back to the mine




Weighing the mercury

* F. Nolting and J. Schurr have done an excellent job weighing
the mercury.

 The mercury was delivered in 395 flasks.

* Each flasks was weighed before and after the mercury was
transferred to the vessel.

* A dedicated calibration weight was made for this task.

Type of uncertainty Upper Vessel (g) Lower Vessel (g)

(g) (10) (g) (10)
Loss of mercury and residue from flasks 8.0 1.2 11.0 1.6
Approximate equation 7.0 1.0 8.0 1.2
Mass variation of flasks 4.0 0.6 4.0 0.6
Uncertainty of calibration weights 3.7 0.5 3.7 0.5
Buoyancy correction 1.2 0.2 1.2 0.2
Weighing statistics 0.4 0.1 0.4 0.1

Total uncertainty 12.0 1.8 15.0 2.2



Over constraint system

Measured to 3x10° Measured to 2.2x10°
h i - \*m
A
0 2 2
h R - T

m
Measured to 18.1x10° /
v

Measured to 18.3x10°
> 2r Measured to 36.9x106

Least square adjustment (LSA) with constraint:
2 2 2 2 2
. r—r R—R h — h m—m —
ng( 0) +( {]) +( n) +( (}) +(P P{))
Op OR Oh Om Op

LSA with mercury density reduced the uncertainty of the mass
integration by a factor 7.




Mass integration

Both vessels were broken up in 1200 objects.

Most object were simple, rotational symmetric
shapes with rectangular, triangular, or circular cross
section.

Positive density, where there was material, negative
density where material was removed (threaded
holes, O-ring grooves,...).

* 90 % of the signal was due to mercury and 10 % of
the signal due to the vessel.

* The total mass integration was done at least twice.



Symmetry & Geometry
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Center of mass of the FMs remains at the same position:
* No effect due to tilt or other coupling to the floor.
Only a small motor needed to move FMs. Not much heat generated.






z\° Ar The radius of each mass assembly has to
— 107 x 107° —

AN e[ A
N 53.5% 10 mm be measured with high precision,
but not the relative positions!

National Institute of
Standards and Technology
U.S. Department of Commerce



Multipole Formalism 1

T'_), 1 A7 2 T’ 3
Binomial expansion 2 1= —r Tz 212 (r -3 (rr ) +0 T



Multipole Formalism 2

p =6 Uf|p( ;

r G S 2%
Z 4 SN o —7 _Z—N 12 __ "_;2 r_ /
V(r) = ” jﬂp(r)(l T +—2r2('r 3(rr) +0<r> )dV
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For a torsion pendulum 1




For a torsion pendulum 2

Jim = /(l I Ppl I-‘)I )1”[(1’;.), gravity gradient moment

—1mnao

Jim = Qim€
(T7) or 2
(le — / 3 J IJ II~ 1 }"llm (.']‘,)_ gravity gradient fields
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Thanks NIST

Thanks for listening to the source mass lecture!

Questions?




