Neutron Stars

- Born in core-collapse SN
- Predicted by Baade & Zwiky in 1933
- Discovered by Bell & Hewish (Nobel 1973) in 1967 through the detection of regular radio pulses

Neutron Stars

- Born in core-collapse SN
- Predicted by Baade & Zwiky in 1933
- Discovered by Bell & Hewish (Nobel 1973) in 1967 through the detection of regular radio pulses

PULSARS

- Highly magnetised, fast rotating neutron stars
- Emitting beams of radio waves from their magnetic poles
- Lighthouse effect

Pulsar Energetics

Rotation of the NS magnetic dipole powers the emission (Pacini 1967, Gold 1968)

$$\frac{dE_{EM}}{dt} = -\frac{2}{3c^3} (B_s R_{NS}^3 \sin(\alpha))^2 \left(\frac{2\pi}{P_s}\right)^4$$
$$\frac{dE_{EM}}{dt} = \frac{dE_{kin}}{dt} = I_{ns} \Omega_s \dot{\Omega}_s = -\frac{4\pi^2 I_{ns} \dot{P}_s}{P_s^3}$$
$$B_s = 3.2 \times 10^{19} (P_s(s) \dot{P}_s)^{1/2} G$$
$$\tau_{sd} = \frac{P_s}{2 \dot{P}_s}$$

Pulsar Evolution

PULSAR AND MSPS

MSP most stable clocks testbeds for many studies

PulsarTiming

- Predicting Times of Arrival (ToAs) on the basis of a model (set of ephemeris)
- Measuring ToAs from repeated observations
- Creating timing residuals
- Fitting for model parameters to remove trends

Pulsar Timing: ToAs

- Data acquisition
- De-dispersion
- Folding
- ToA determination

Pulsar Timing: ToAs

DE-DISPERSION

Pulsar Timing: ToAs

- Data acquisition
- De-dispersion
- Folding
- ToA determination

Pulsar Timing: ToAs

FOLDING

Single vs integrated profile

PULSAR TIMING: TOAS

PulsarTiming

- Predicting Times of Arrival (ToAs) on the basis of a model (set of ephemeris)
- Measuring ToAs from repeated observations
- Creating timing residuals
- Fitting for model parameters to remove trends

PulsarTiming

Pulsar timing

BARYCENTERINGTOAS

The ToAs must be corrected, calculating them to infinite frequency at the Solar System Barycentre (SSB)

$$t_{\rm SSB} = t_{\rm obs} + t_{\rm clk} - D/f^2 + \Delta_R + \Delta_S + \Delta_E$$

$$\Delta_{\mathbf{R}} = \frac{(\vec{\mathbf{r}} \cdot \vec{\mathbf{n}})}{\mathbf{c}} + \frac{(\vec{\mathbf{r}} \cdot \vec{\mathbf{n}})^2 - |\vec{\mathbf{r}}|^2}{2 \mathbf{c} \mathbf{d}}$$

PSR position PSR proper motion Curved wavefront PSR parallax

Pulsar timing

BARYCENTERINGTOAS

The ToAs must be corrected, calculating them to infinite frequency at the Solar System Barycentre (SSB)

$$t_{\rm SSB} = t_{\rm obs} + t_{\rm clk} - D/f^2 + \Delta_R + \Delta_S + \Delta_E$$

 $\Delta_{\rm S} = -2 T_{\rm sun} \log_{10} (1 + \cos \theta)$

due to the optical path of pulsar signal in the solar gravitational well

BARYCENTERINGTOAS

The ToAs must be corrected, calculating them to infinite frequency at the Solar System Barycentre (SSB)

$$t_{\rm SSB} = t_{\rm obs} + t_{\rm clk} - D/f^2 + \Delta_R + \Delta_S + \Delta_E$$

gravitational redshift and time dilation due to the motion of Earth and the presence of other massive bodies in Solar System: can in principle be used for measuring masses of SS bodies

Pulsar Timing: Binaries

The PULSARCENTRIC ToAs (i.e. ToAs expressed in pulsar proper time) must be transformed to the Pulsar System Barycenter (PSB)

5 Keplerian-parameters: $P_{orb} a_{p, e, w, TO}$

$$\boldsymbol{t_{PSR-BARY}} = \boldsymbol{T_{psr}} + \boldsymbol{\Delta_{R,b}} + \boldsymbol{\Delta_{E,b}} + \boldsymbol{\Delta_{S,b}} + \boldsymbol{\Delta_{A}}$$

 $f(\boldsymbol{m}_p, \boldsymbol{m}_c) = \frac{4\pi^2}{C} \frac{(a_p \sin i)^3}{\pi^2} =$ $(m_c \sin i)^3$ $m_{n} + m$

PulsarTiming

Correctly taking into account for all pulsar parameters (getting good pulsar ephemeris) should give us flat residuals randomly distributed around the zero

PSRJ	J1738+0333	
RAJ	17:38:53.9658386	5.0e-07
DECJ	+03:33:10.86667	3.0e-05
DM	33.77312	4.0e-05
P0	0.0058500958597756860	1.1e-18
P1	2.411992e-20	1.4e-25
PMRA	+7.037	5.0e-03
PMDEC	5.073	1.2e-02
PB	0.3547907398724	1.3e-12
A1	0.343429130	1.7e-08
т0	54600.20040012	5.0e-08

FLAT RESIDUALS

Pulsartiming

NON FLAT RESIDUALS

Extra parameters

Unmodeled long-term effects

Pulsartiming

NON FLAT RESIDUALS

Unmodeled long-term effects

For some binary pulsars, the accuracy of the ToA data is so high that - by using only the keplerian description - one cannot obtain an acceptable timing solution. Additional physics is needed!

Going Beyond Kepler

Post-Keplerian (PK) formalism [Damour & Deruelle 1986]

Periastron Precession - w

Shapiro Delay r & s

Orbital decay Pb

$$\begin{split} \dot{\omega} &= 3 \left(\frac{P_b}{2\pi}\right)^{-5/3} (T_{\odot}M)^{2/3} (1-e^2)^{-1}, \qquad \text{Periastron precession} \\ \gamma &= e \left(\frac{P_b}{2\pi}\right)^{1/3} T_{\odot}^{2/3} M^{-4/3} m_c \left(m_p + 2m_c\right), \quad \text{Time dilation & gravitational redshift} \\ \dot{P}_b &= -\frac{192\pi}{5} \left(\frac{P_b}{2\pi}\right)^{-5/3} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right) \left(1 - e^2\right)^{-7/2} T_{\odot}^{5/3} m_p m_c M^{-1/3}, \\ r &= T_{\odot} m_c, \qquad \qquad \text{Orbital period decay} \\ s &= x \left(\frac{P_b}{2\pi}\right)^{-2/3} T_{\odot}^{-1/3} M^{2/3} m_c^{-1}. \qquad \qquad \text{Shapiro delay (amplitude)} \\ \end{split}$$

$$\begin{split} \dot{\omega} &= 3 \left(\frac{P_b}{2\pi}\right)^{-5/3} (T_{\odot}M)^{2/3} (1-e^2)^{-1}, & \text{Periastron precession} \\ \gamma &= e \left(\frac{P_b}{2\pi}\right)^{1/3} T_{\odot}^{2/3} M^{-4/3} m_c \left(m_p + 2m_c\right), & \text{Time dilation & gravitational redshift} \\ \dot{P}_b &= -\frac{192\pi}{5} \left(\frac{P_b}{2\pi}\right)^{-5/3} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right) (1-e^2)^{-7/2} T_{\odot}^{5/3} m_p m_c M^{-1/3}, \\ r &= T_{\odot} m_c, & \text{Orbital period decay} \\ s &= x \left(\frac{P_b}{2\pi}\right)^{-2/3} T_{\odot}^{-1/3} M^{2/3} m_c^{-1}. & \text{Shapiro delay (amplitude)} \\ \end{split}$$

$$\begin{split} \dot{\omega} &= 3 \left(\frac{P_b}{2\pi}\right)^{-5/3} (T_{\odot}M)^{2/3} (1-e^2)^{-1}, & \text{Periastron precession} \\ \gamma &= e \left(\frac{P_b}{2\pi}\right)^{1/3} T_{\odot}^{2/3} M^{-4/3} m_c (m_p) + 2m_c), & \text{Time dilation & gravitational redshift} \\ \dot{P}_b &= -\frac{192\pi}{5} \left(\frac{P_b}{2\pi}\right)^{-5/3} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right) (1-e^2)^{-7/2} T_{\odot}^{5/3} m_p m_c M^{-1/3}, \\ r &= T_{\odot} m_c, & \text{Orbital period decay} \\ s &= x \left(\frac{P_b}{2\pi}\right)^{-2/3} T_{\odot}^{-1/3} M^{2/3} m_c^{-1}. & \text{Shapiro delay (amplitude)} \\ \end{split}$$

$$\dot{\omega} = 3 \left(\frac{P_b}{2\pi}\right)^{-5/3} (T_0 M)^{2/3} (1 - e^2)^{-1},$$
 Periastron precession

$$\gamma = e \left(\frac{P_b}{2\pi}\right)^{1/3} T_0^{2/3} M^{-4/3} m_c (m_p) + 2m_c),$$
 Time dilation & gravitational redshift

$$\dot{P}_b = -\frac{192\pi}{5} \left(\frac{P_b}{2\pi}\right)^{-5/3} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right) (1 - e^2)^{-7/2} T_0^{5/3} m_p m_c M^{-1/3},$$

$$r = T_0 m_c$$
 Shapiro delay (amplitude)

$$s = x \left(\frac{P_b}{2\pi}\right)^{-2/3} T_0^{-1/3} M^{3/3} m_c^{-1}.$$
 Shapiro delay (shape)

$$\begin{split} \dot{\omega} &= 3 \left(\frac{P_b}{2\pi}\right)^{-5/3} (T_{\odot}M)^{2/3} (1-e^2)^{-1}, & \text{Periastron precession} \\ \hline \gamma &= e \left(\frac{P_b}{2\pi}\right)^{1/3} T_{\odot}^{2/3} M^{-4/3} m_c (m_p) + 2m_c, & \text{Time dilation & gravitational redshift} \\ \dot{P}_b &= -\frac{192\pi}{5} \left(\frac{P_b}{2\pi}\right)^{-5/3} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right) (1-e^2)^{-7/2} T_{\odot}^{5/3} m_p m_c M^{-1/3}, \\ r &= T_{\odot} m_c, & \text{Shapiro delay (amplitude)} \\ s &= x \left(\frac{P_b}{2\pi}\right)^{-2/3} T_{\odot}^{-1/3} M^{3/3} m_c^{-1}. & \text{Shapiro delay (shape)} \end{split}$$

GR tests!

TESTING RELATIVISTIC GRAVITY

Testing GR

PSR B1913+16

Discovered in 1974 [Hulse & Taylor '75]

- PSR+NS
- $P_{spin} = 59 \text{ ms}$
- $P_{orb} = 7.8 \text{ hr}$
- Ecc = 0.61
- 3 PK parameters: $\dot{\boldsymbol{\omega}}, \boldsymbol{\gamma}, P_b$

Testing GR

PSR B1913+16

Discovered in 1974 [Hulse & Taylor '75]

- PSR+NS
- $P_{spin} = 59 \text{ ms}$
- P_{orb} = 7.8 hr
- Ecc = 0.61
- 3 PK parameters: $\dot{\omega}$, γ , P_b

NOBEL PRIZE 1993 Taylor & Hulse

First indirect evidence of the existence of GWs!

TESTING GR

PSR B1534+12

Discovered in 1990 [Wolszczan '90]

- PSR+NS
- $P_{spin} = 38 \text{ ms}$
- $P_{orb} = 10 \text{ hr}$
- Ecc = 0.27
- 5 PK parameters: $\boldsymbol{\omega}, \boldsymbol{\gamma}, P_b, s, r$

- Non radiative predictions of GR verified at 0.17% level
- Relativistic spin precession measured

[Fonseca et al. 2014]

IS GR WRONG!?

PSR BI534+12 Pb does not match!

- Due to acceleration of binary wrt SSB [Damour & Taylor 1991]
 - vertical acc. in Galactic potential
 - acc. in the plane of the Galaxy
 - apparent acc. due to transverse motion
- This limits radiative tests also for B1913+16

[Fonseca et al. 2014]

Pulsar mass (M_{\odot})

$$\left(\frac{\dot{P}_b}{P_b}\right)^{\text{gal}} = -\frac{a_z \sin b}{c} - \frac{v_0^2}{cR_0} \left[\cos l + \frac{\beta}{\sin^2 l + \beta^2}\right] + \mu^2 \frac{d}{c}, \quad \beta = d/R_0 - \cos l.$$

The best laboratory for GR

PSR J0737-3039A/B

Discovered in 2003 [Burgay et al '03; Lyne et al. '04]

- PSR+PSR!
- $P_{spin}A = 23 \text{ ms}$
- $P_{spin}B = 2.7 s$
- P_{orb} = 2.4 hr
- Ecc = 0.09
- Orb v = 0.001 c
- i = 89.35°

Test Precision

Prospects for timing are excellent:

- precision $\dot{\omega} \approx \text{time}^{1.5} P_{b}$
- precision $\gamma \approx \text{time}^{1.5} P_b^{1.3}$
- precision $\dot{P}_b \approx time^{2.5} P_b^3$
- precision r, s \approx time^{0.5}

Pentaned in Physics

PHYSICAL REVIEW X 11, 041050 (2021)

Strong-Field Gravity Tests with the Double Pulsar

- Kramer et al 2021: I million ToAs!
- Precision higher than ever!
 - I. GR tested at 99.99%

- Kramer et al 2021: I million ToAs!
- Precision higher than ever!
 - I. GR tested at 99.99%

PHYSICAL REVIEW X 11, 041050 (2021) Pentaned in Physics Strong-Field Gravity Tests with the Double Pulsar M. Kramer^{0,1,5,*} I.H. Stains³, R.N. Manchester^{0,4} N. Wex^{0,1} A.T. Deller^{0,15} W. A. Coles^{0,7} M. Ali^{0,18}
 M. Burgay^{0,7} F. Camile^{0,10} L. Cognard^{0,11,25} T. Exmour^{0,13} G. Devignes^{0,144} R.D. Ferdman,¹⁰ F. C. C. Freizv^{0,1}
 S. Grandi^{0,320} L. Guillemet^{0,11,25} G. E. Hobbs,⁴ G. Jansen^{0,11,28} R. Karuppusamy^{0,1} D. R. Lerimer^{0,13} A. G. Lyne²
 J. W. McKee^{0,128} M. McLaughlm^{0,19} L. H. Minch^{0,1} B. B. P. Ferera^{0,21} N. Pol^{0,15,25} A. Fossenin^{0,121} J. Sackassan⁴
 B. W. Suppers^{0,2} and G. Theurem^{11,122} Current test at 0.013% J0737-3039A Cumulative shift of periastron time (s) -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19

2004 2006 2008 2010 2012 2014 2016 2018 2020

Year

-20

Orbit shrinks by 7 mm/day Precision so high that we need to take into account relativistic mass loss

8.4 Million tons/s — $3.2 \times 10^{-21} M_A/s$

- Kramer et al 2021: I million ToAs!
- Precision higher than ever!
 - I. GR tested at 99.99%
 - 2. Need to go beyond 1st order

PHYSICAL REVIEW X 11, 041050 (2021)

Peetaned in Physics

Strong-Field Gravity Tests with the Double Pulsar

M. Kramere^{1,5,7} I.H. Stzirs¹, R.N. Maachester⁴, N. Wex¹, A.T. Deller^{6,57} W. A. Coles^{6,7} M. Ali^{6,18}
 M. Burgay^{6,7} F. Camile^{6,10} L. Cogaard^{6,11,27} T. Eunour^{6,19} G. Davignes^{6,14,1} R.D. Ferdman,¹⁹ F. C. C. Freize^{6,1}
 S. Grondin^{6,320} L. Guillemet^{6,11,27} G. E. Hobbs,⁴ G. Jansen^{6,17,18} R. Karuppesany^{6,1} D. E. Lerimer^{6,15} A. G. Lyne²
 W. McKee^{1,128} M. McLaughlu^{6,19} L. E. Münch^{6,1} B. B. P. Perera^{6,11} N. Pol^{19,153} A. Fossena^{6,031} J. Sackassan⁴
 B. W. Suppers^{6,2} and G. Theurea^{10,1724}

 $\begin{array}{c} 0.1022515592973(10) \\ 1.415028603(92) \\ 0.087777023(61) \\ 55700.233017540(13) \\ 204.753686(47) \\ 16.899323(13) \\ -1.247920(78) \times 10^{-12} \\ 0.384045(94) \\ 9.65(15) \\ 1.2510(43) \\ 1.15(13) \\ 13(13) \times 10^{-6} \end{array}$

Orbit has precessed by >300 deg 2PN contribution at 35σ

$$\dot{\omega}=\dot{\omega}^{1\mathrm{PN}}+\dot{\omega}^{2\mathrm{PN}}+\dot{\omega}^{\mathrm{LT,A}}$$

$$\dot{\omega}^{\text{LT,A}} \simeq -3.77 \times 10^{-4} \times I_{\text{A}}^{(45)} \text{ deg yr}^{-1}$$

Moment of inertia

- Kramer et al 2021: I million ToAs!
- Precision higher than ever!
 - I. GR tested at 99.99%
 - 2. Need to go beyond 1st order
 - 3. Measure higher-order light-propagation effects

- Kramer et al 2021: I million ToAs!
- Precision higher than ever!
 - I. GR tested at 99.99%
 - 2. Need to go beyond 1st order
 - 3. Measure higher-order light-propagation effects

- Kramer et al 2021: I million ToAs!
- Precision higher than ever!
 - I. GR tested at 99.99%
 - 2. Need to go beyond 1st order
 - 3. Measure higher-order light-propagation effects

Two additional effects:

Peakared in Physics				
Strong-Field Gravity Tests with the Double Pulsar				
M. Kramer ⁰ , ^{1,2,1} M. Burgay ⁰ , ⁷ F. Ca	1.II. Stairs ³ , ³ R. N. Manchester ³ , ⁴ N. Wex ³ , ⁴ A. T. Deller ³ , ³ W. A. Coles ³ , ⁷ M. Ali ³ , ¹⁸ mile ³ , ¹⁰ I. Cognard ⁴ , ¹¹² T. Damour ³ , ² G. Devignes ⁴ , ¹⁴ R.D. Ferdman, ¹⁹ E. C. Freiw ⁴ , ¹			
 Gradin^(a) ^{3,10} L. C. W. McKee^(a) ¹²⁰ M 	aullenst ^{0,1/2} G. E. Hobis, ⁴ G. Janssen ^{0,1/2} R. Kamppisany ^{6,1} D. R. Loriner ^{6,1/2} A. G. Lyne ² McLaughlin ^{0,1/2} L. H. Vilnch ^{0,1} B. B. P. Feren ^{0,21} N. Pol ^{0,1/2} A. Fossen ^{10,0/21} J. Saciassian ⁴			
	B. W. Supperse ² and G. Theurenu ^{10,1224}			

PHYSICAL REVIEW X 11, 041050 (2021)

- Kramer et al 2021: I million ToAs!
- Precision higher than ever!
 - I. GR tested at 99.99%
 - 2. Need to go beyond 1st order
 - 3. Measure higher-order light-propagation effects

Two additional effects:

Retardation

45

D

90

135 180 225 270 315

orbital phase of A (deg)

360

- Kramer et al 2021: I million ToAs!
- Precision higher than ever!
 - I. GR tested at 99.99%
 - 2. Need to go beyond 1st order
 - 3. Measure higher-order light-propagation effects

Pentaned in Physics

- Kramer et al 2021: I million ToAs!
- Precision higher than ever!
 - I. GR tested at 99.99%
 - 2. Need to go beyond 1st order
 - 3. Measure higher-order light-propagation effects
 - 4. Measuring new PK parameters

PHYSICAL REVIEW X 11, 041050 (2021)

Strong-Field Gravity Tests with the Double Pulsar

M. Kramer^{0,1,5,*} I.H. Stains^{3,3} R.N. Maachester^{0,4} N. Wex^{0,1} A.T. Deller^{0,15} W. A. Coles^{0,7} M. Ali^{0,18}
 M. Burgay^{0,7} F. Camile^{0,10} L. Cognard^{0,11,21} T. Eunour^{0,13} G. Devignes^{0,14,1} R.D. Ferdman,¹⁰ F. C. C. Frein^{0,1}
 S. Grandi^{0,320} L. Guillemet^{0,11,21} G. E. Hobbs,⁴ G. Janssen^{0,11,10} R. Karuppesamy^{0,1} D. R. Lerimer^{0,13} A. G. Lyne¹²
 J. W. McKee^{0,120} M. McLaughlm^{0,19} L. E. Minch^{0,1} B. B. P. Feren^{0,11} N. Pol^{10,15,21} A. Fossenti^{0,121} J. Sackassan,⁴
 B. W. Suppers^{0,2} and G. Theureau^{10,1221}

GR IN THE DOUBLE PULSAR

Relativistic effect	Parameter	Obs./GR pred.
Shapiro delay shape	8	1.00009(18)
Shapiro delay range	r	1.0016(34)
Time dilation	$\gamma_{\rm E}$	1.00012(25)
Periastron advance	$\dot{\omega} \equiv n_{\rm b}k$	1.000015(26)
GW emission	$\dot{P}_{\rm b}$	0.999963(63)
Orbital deformation	δ_{θ}	1.3(13)
Spin precession	$\Omega_{\rm B}^{\rm spin}$	$0.94(13)^*$
Tests of higher order contrib	utions	
Lense-Thirring contrib. to k	λ_{LT}	0.7(9)
NLO signal propagation	$q_{\rm NLO}$ [total]	1.15(13)
from signal deflection	$q_{\rm NLO}$ [deflect.]	1.26(24)
from signal retardation	$q_{\rm NLO}$ [retard.]	1.32(24)

- 7 Post-Keplerian parameters (+R)
- New parameters
- Most precise strong-field test of GR: 99.987%
- Next-to-leading order in signal propagation
- Start to probe **Mol** and Equation-of-State
- MeerKAT improves timing by a factor of 2-3!

GR IN THE DOUBLE PULSAR

Relativistic effect	Parameter	Obs./GR pred.			
Shapiro delay shape	s	1.00009(18)			
Shapiro delay range	r	1.0016(34)			
Time dilation	$\gamma_{\rm E}$	1.00012(25)			
Periastron advance	$\dot{\omega} \equiv n_{\rm b}k$	1.000015(26)			
GW emission	$\dot{P}_{ m b}$	0.999963(63)			
Orbital deformation	δ_{θ}	1.3(13)			
Spin precession	$\Omega_{\rm B}^{\rm spin}$	$0.94(13)^*$			
Tests of higher order contributions					
Lense-Thirring contrib. to k	λ_{LT}	0.7(9)			
NLO signal propagation	$q_{\rm NLO}$ [total]	1.15(13)			
from signal deflection	q _{NLO} [deflect.]	1.26(24)			
from signal retardation	$q_{\rm NLO}$ [retard.]	1.32(24)			

- 7 Post-Keplerian parameters (+R)
- **New** parameters
- Most precise strong-field test of GR: 99.987%
- Next-to-leading order in signal propagation
- Start to probe **Mol** and Equation-of-State
- MeerKAT improves timing by a factor of 2-3!

PulsarTiming

NON FLAT RESIDUALS

Extra parameters

First *indirect* detection of **GWs**! Nobel prize for Taylor & Hulse 1993

Unmodeled long-term effects

- spin noise
- turbulent ionised ISM
- instrumentation issues
- incorrect planetary ephemeris
- incorrect time standards
- gravitational waves!

GRAVITATIONAL WAVES

First *direct* detection of a GW from stellar-mass BH merger

GRAVITATIONAL WAVES

GRAVITATIONAL WAVES

Strain sensitivity ~ rms/Tspan ~ e-15

PULSARS AND GWS

ATNF - John Rowe Animations
AN EXTREME EXAMPLE

The radio galaxy 3C66 (at z = 0.02) was claimed to harbour a double SMBH with a total mass of 5.4e10 Msun and an orbital period of order ~yr [Sudou et al 2003]

In general, though, the blind detection of a single SMBHB is difficult, (and localization requires the knowledge of the distance to the pulsar)

Mergers of galaxies (with SMBH in their centres) should be ubiquitous -> plenty of SMBHB, creating a isotropic, stochastic GW background

GW BAGKGROUND

The expected amplitude spectrum of an isotropic, stochastic GWB from SMBHB is [e.g. Phinney 2001; Jaffe & Backer 2003], assuming a fully GW driven merger [Vigeland & Siemens 2016]

$$h_{c}(f) = A\left(\frac{f}{yr^{-1}}\right)^{\alpha = -2/3}$$
• GWB can have other origins
• SMBHB GWB can have a different slope

 the power spectrum for the timing residuals affected by a GWB will be also a power law, with a spectral index of -13/3 [Detweiler 1979; Jenet et al. 2005/2006]

$$P_{GWB}(f) = \frac{A^2}{12\pi^2} \left(\frac{f}{yr^{-1}}\right)^{2\alpha - 3 = -13/3}$$

• RED NOISE! On a sigle pulsar it can be mistaken for other effects

PULSAR TIMING ARRAYS

CORRELATED SIGNAL

Hellings and Downs (1983) derived an expression for the angular correlation between pulsar timing residuals induced by a GWB

NOISE SOURCES

	Noise source	Achromatic?	Correlated in time?	Correlated in space?	Quadrupolar?
	Pulsar rotational irregularities	-	1	×	×
	Pulse jitter	~	×	×	×
	Scattering and dispersion measure variations	×	1	×	×
	Planetary ephemerides	-	1	-	×
	Clock errors/offsets	-	1	×	×
	GW background	1	1	1	-

SMBHBS WITH PTAS

- Confirming the presence of the SMBHB population (z < 1.5)
- Constraining the number density of SMBHBs
- Studying the impact of SMBHB eccentricity, environment and orientation

PTA COLLABORATIONS

PTA COLLABORATIONS

PTA COLLABORATIONS

The European Pulsar Timing Array

- 5 largest telescopes in Europe
- combined in the LEAP (194m)

EPTA + INPTA

The European Pulsar Timing Array

- 42 timed MSPs (25 DR2)
- Longest baseline
- Widest frequency coverage

PRACTICAL STEPS

(© Caterina Tiburzi)

RECENT RESULTS

Arzoumanian+ 2020 → NanoGRAV detects a red noise process common to all the MSPs in the array, but spatially uncorrelated.

The other PTA collaborations confirm the finding (Chen+ 2021, Goncharov+ 2021)

LATEST RESULTS

All PTAs showed a CURN, whose presence is expected to preceed a GWB correlated signal. A major paper release has been coordinated for June 2023 by the EPTA+InPTA, PPTA and NanoGRAV, moderated by two selected committees of PTA and non-PTA GW experts.

PPTA:	~20-yrs, ~30 pulsars
NanoGRAV:	~15-yrs, ~70 pulsars
EPTA+InPTA:	~25-yrs, ~25 pulsars

ToAs/Ephemeris Noise Models GWB searches Single SMBHB searches Modelling plasma effects Astrophysical interpretation

LATEST RESULTS

PPTA - Reardon et al 2023

COMPARISON

IPTA - Agazie et al 2023

Astrophysical interpretation

Early Universe processes

Ultra light Dark Matter

Improvements and Prospects

- Combining 3P+ datasets for an IPTA GWB searches
- Improving our dataset (new observations, new pulsars, new instruments)
- Improving our understanding and modeling of the noise (ISM, timing, SSE, ...)

THANK YOU!