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GRAVITATIONAL WAVES AND INTERFEROMETRIC
DETECTORS



Gravitational Waves

0 A prediction of General Relativity
(Einstein, 1916)

0 Perturbations in space-time metric
» Generated by mass acceleration

=

» Transverse, quadrupolar,
2 orthogonal polarizations

> Propagate at speed of light
« Amplitude decreases with distance

0 Source luminosity O
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Science Impact

G“a\l'\ta’t\O“ Sources

0 Gravitational waves are generated in some of the most energetic
events in the Universe

» Direct probe of the event dynamics

0 Gravitational waves are a tool to probe gravitation in a new regime
» Gravitation at the heart of some of the great enigma of modern physics

Senery

' \oSY
el tiVity Astrophysics CosMO



Gravitational-wave spectrum
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Ground-based detectors: history

1960s & 1970s W A Insufficient sensitivity

» Pioneering experimental work

&

1980s & 1990s

Gravitational waves exist!
» Design and construction of long-baseline interferometers el TN
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1975 1980 1985 1990 1995 2000 2005 2010

Year

. qst :
2000s : 1% generation Sensitivity not quite

> LIGO, Virgo ’ good enough
2010s & 2020s : 2" generation " Discovery!
( .‘l » Advanced LIGO, Advanced Virgo )
> + KAGRA @ Toward routine GW observation
Multi-messenger astronomy

Deep observation of Universe with GW 3rd generation 6









A network of detectors




GW coupling to Michelson interferometer

See
movie



https://www.youtube.com/watch?v=tQ_teIUb3tE




GW coupling to Michelson interferometer (cont.)

Q Space-time metric Suv = Nu» T hw_ (00 0 0y
Q Perturbation to metric due to GW Bz 1) = 0 —ho hye O
0O hy hy O

ds®* =Y g, dz"dz” = 0 for light \O0 0 0 0/

0 Accumulated round-trip phase along x axis @ _(z,) = fr Darvdt
» For GW with period >> round-trip light travel time 0

2y (L 2mL
G(t,) =2 wldx =2(1 — hy /2) 2=
(1) | gl = /275

C
> General case includes term sinc | 7 faw —

2 Accumulated round-trip phase along il axis ®, =2(1+ h,/2)2wL/))
Q Difference in phase shift between x and y arms

AD~=2h . 2@wL/A) < AL=hL
L=3km h<107% S AL<10 ¥ m



Detector antenna pattern

. O GW interferometric
detector has

» Broad angular
response

» Blind spots

I

+ polarization X polarization unpolarized GWs
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Sensitivity curve

™ LIGO Hanford 0 Frequency-domain characterization of (stationary) noise: noise
_19 LIGO Livingston H H
10 Vit power spectrum, aka (one-sided) power spectral density (PSD)
1 +T/2 2
S.(f) =2 lim — e I () dt

0 Noise power spectrum is Fourier transform of noise autocorrelation

+T/2
Y _ C(t) = Ent)n(t+7) = lim l/ n(t)n(t + 7)dt

10 100 1000 T—oo T —T/2

Frequency [Hz|

10-1.1

a PSD has unit Hz ™', amplitude spectral density (ASD) has unit

E [strain] /v Hz

: 0 Related to mean square of noise  RMS3; = [ Sulf) df

é coi JAS

S o L £)]2

s 0 Related to signal-to-noise ratio (SNR) SNR?* = 4 f |2{ﬁ|] df
L B O Usually characterized by BNS range o

— Livingston

» Typical detection reach for binary neutron star mergers with SNR 8
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Sensitivity [h\Hz]

Anatomy of sensitivity curves

Limited by

Constantly evolving fundamental noise
sources...

' 'e.g.’ | ... but not only !
Initial Virgo N |

2003-2011

LIGO Livingston 2020

1
-
C1 Nov 2003 F DARM 132 Mpc Quantum 40 W + 3 dBsqz — Qutput jitter
€2 Feb 2004 E Seismic MICH OMC length
€3 Apr 2004 Laser Amplitude SRCL Residual Gas
C4 Jun 2004 !
€5 Dee 2004 Suspension thermal Angular controls Quantum +Thermal 172 Mpc
— C6Aug 2005 10 Coating Brownian PUM actuator Sum of hoises 151 Mpc
C7 Sep 2005 — Dark — Input jitter
WSRI1 Sep 2006
WSRI10 Mar 2007
—— VSRI May 2007
VSR2 October 2009
——— VSR4 August 2011
y N 25
— Virgo design 16

Virgo+ with MS design
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THE MAIN NOISE SOURCES AND HOW THEY DRIVE
THE BASIC FEATURES OF DETECTORS
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Quantum noise (i)

[ 1
0 Power at the output port of Michelson interferometer L,
P,
Py = % (1+C cos Ao) 7
A . . LASER * H
! m out,max — 4 out,min
A(;j a T(LI a Ly) ContraSt C B Pout_,max + Pout:min
A@ — AQ —|_ 5@ = Pout —7 Pout —I_ 6Pout
2 "/
(SP(Jut = % (' sin A(/S 50
0 How small a change in output power can be detected? Fluctuation of
> Photon counting statistics follows Poisson distribution photons on
> Arrival rate of photons \ photodetector Power
n= ﬁPM o, = VN results in fluctuating
he
» Shot noise spectrum power measurement

- Irhe -
Rmt,shut (f) — %Rmt [Vv/ H/:} :. %...‘6'.
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Minimizing shot noise

0 Shot noise limit to phase difference measurement

~ drhe /14 C cos Ag
590 = V2 APy, C'sin A¢

> When C =1, 6¢ is minimal for A¢ ==

[rad/v/Hz]

» Michelson tuned on the dark fringe

Souin(F) = | 1o [rad/V/ T

» In practice, C' < 1 and we want the signal § P, to vary linearly with ¢
= Small offset with respect to dark fringe

0 Sensitivity to GW signal
~ , 1 h

h'shot(.}() — @ @ [

Wavelength set by availability
of high-power lasers and optics

/VHz]

A = 1064 nm
L =3 km

Arm length set by infrastructure Input optical power set by P,=20W

(money) and configuration tweaks | |laser and configuration tweaks hao () ~ 4 x 1072 //TTz
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Fabry-Perot cavities
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40
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Normalized intra-cavity power

A

Phase of reflected field (rad)

1]

Fa

Two mirrors with 7o ~ 1,77 < 1 in the case of

GW detectors

Cavity characterized by its finesse F —

T+/T1T9

1—?”1?"2

Resonance when 47L/\ =n2n
» The storage time increases from 2L/c to Tstorage — — 5 _

» The phase shift of the reflected field
around the resonance is amplified by factor ——_

2L F

c 2m

T

Cavity acts as low-pass filter, with cutoff frequency

c — 1/(47TTst01'age)

» Explains high-frequency shape of sensitivity curve
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Power recycling

a0 With interferometer on dark fringe,
input power is reflected back

Q Add recycling mirror to make Sower

resonant cavity with interferometer eoyeind
+2 [Taser | H
}:)iu — a Ha&;cr r., it |
(L — 7prr7r)? S
0 With P.... = 20 W and gain of ~50, N4

on beam-splitter P, = 1kW
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Signal recycling

0 Signal recycling or resonant sideband extraction

0O To reach given optical power in Fabry-Perot
cavities, high finesse desirable

» Reduce absorption in input mirrors and associated i
thermal distortions © [laser | i

> Reduce bandwidth ®
0 Phase modulation due to GW signal creates

i signal
sidebands in optical field at GW frequency, which h__'I‘__ ___'en‘fﬁrf'c')?g

g
. -

do not cancel out at output port

» Add mirror to form resonant cavity with input mirrors
for GW sidebands

» Cavity increases effective transmission of input mirrors
for GW signal

> Broaden bandwidth ©

Strain [1/Hz]




Fluctuation of
photons reflecting
from a suspended
MIrror causes mirror
motion

MOV el 00 o

0 Radiation pressure
fluctuations

» Displacement noise
for simple Michelson

Fad(f) = =
A (m)f* V 8mdc)

Mirror mass

Quantum noise (ii

https://10m.aei.mpg.de/standard-quantum-limit-sql/

Input Power = 0.01 W

— Quantum Radiation Pressure Noise
— Quantum Shot Noise

= =Combined Quantum Noise

= Standard Quantum Limit

10°Y7

1019

Displacement Noise [m/vHz]

lﬂ.zn joriafe i afebi i) J (P I B e 2 |
10} 10° 10° 10
Frequency [Hz]

Shot noise decreases with v/ Pi,
Radiation pressure noise
increases with /P,

Fluctuation of
photons on
photodetector Power

results in fFluctuating
power measurement

AN AT T I

Envelope of minima in
guadratic sum of shot noise
and radiation pressure noise
as input power varies defines
standard quantum limit (SQL)

. . 1 h
TsqL(f) = 7\ om

SQL can be overcome with
guantum optics techniques...
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Horizontal motion [m/vHz|

Seismic noise

(]

Low-frequency limit to all ground-based interferometers
Earth tides
» Length changes of ~100 um over 3 km baseline
» Compensated by long-range actuators
0 Secondary microseism
> Amplitude ~1 um
» Canceled by feedback systems
O Spectrum above ~1 Hz

(]

T T
g

oY

coonnl ol

Z—Cornudas Texas - s (1 Hz H : :
|—LIGO (Hanford) : t_,mmnl(,lf) — 1“ — 1“ ( ) lIII,u'
i —LIGO (Livingston)| ™" E
|— Virgo (Cascina) . » High-performance isolation needed {
'l— Sanford Mine . 3 km /
L m.mPeterson NLNM Actl\{e, based on seismic vibration sensors
Kamioka Mine - Passive
S N/ o R S 0O Horizontal-vertical couplings
10" 10° 10" > ~ 107" for 3 km baseline
Frequency [Hz] / 6400 km

20



Passive vibration isolation

Damping Multi stage Lower resonant freq
Lower the peak height Steeper isolation curve Better isolation
10 e e e e 100t e 10%;
10 J@ 10’y A 10"
o i . ] O [ : e i
£ 10°% ~ - 2 100"\ - = 10°F
o 14 1
§ 107 § 107 3 § 107"
5 1072 S 1072 S 1072
L2 : w0 : E w g
_3;_ _3;_ -4 _3;_
10 ; 104§ f FN_ 10 ; |
10— i nnonanl L nnnnnnll Ln n nannd 10— 0 nnnnnal nn nonnnmi i nnnnnd 10— i nnnnnal i n nnanall i "n nnans
107" 10° 10" 10° 107" 10° 10" 10° 107" 10° 10" 10°
Frequency Frequency Frequency
Worse isolation More peaks Complex to realize
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Vibration isolation

. Filter Zero
[ Horizontal ground to mirror
Wine motion transfer functions
—Pre-leolator 102 (i} II"III']: T T T rr1'|1: T T T T 11

Standard

=== mitial LIGO
=10 || Virgo

10 = Adv LIGO

—TAMA SAS

10 ~ {==KAGRA

== GEO600

-14 ||=Einstein Telescope

Magntiude [m/m]
=

| ||||||i
2 -1 0 1

10 10 10 10 10
Frequency [Hz]
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Thermal noise

Q Mirrors in thermal equilibrium
a Dissipation-fluctuation relationship =2 noise
a Multiple sources of noise

» Mirror thermal noise — bulk and coating
= Brownian noise
» Thermo-optic noise due to temperature fluctuations

— Random thermal expansion
— Random change in refractive index

» Suspension thermal noise



102_

<Ax(f)>?

13-2 L

107

Mirror thermal noise

o« 1/Q high Q

- : fif,

0 Best substrates have oo, <1078
2 Interfaces are critical

15

0 Displacement noise
power spectrum

S:(f)

Temperature

N\

773/2f/a)E '\

‘gb sub

Laser beam
spot size

Mirror substrate
loss factor (1/Q)
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Suspension thermal noise

0 For a pendulum of mass m and length |,
suspended by 4 wires/fibers

Q Mirrors held by thin glass fibers
» Monolithic suspensions

qbpendulum — ‘i’wire

4

tension
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Coating thermal noise

0 Displacement noise power spectrum

Temperature Coating thickness
\
1’ d / Coating loss factor
Scmating X 2 (fﬁmating

Laser beam spot size

0 Coatings have excellent optical properties but poor mechanical properties

» Dominant source of thermal noise
= Level comparable to quantum noise around 100 Hz

» Major R&D effort



Residual Gas Noise

— (QUANTUM NOISE

Q Phase noise from fluctuations in column
density of gas along interferometer arms G i e N s

| = Coating Brownian noise [ ..

Coating Thermo—optic noise

> Ultra-high vacuum needed ~ 107Y mbar e |
> Residual pressure dominated by out-gassing of H, AN\ e

Strain [1/VHz]

Frequency [Hz]
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Recap of basic features

a Interferometer

> Michelson interferometer on
~ dark fringe

» Fabry-Perot cavities
» Power and signal recycling cavities

Q Suspensions

» Decouple mirrors from ground to allow
free response to GW

» Isolate mirrors from ground vibrations

» Hold mirrors without introducing extra
thermal noise

a Infrastructure

» Ultra-low pressure in beam
tubes and vacuum chambers

a Test masses
> Low mechanical loss factors

» Shape: high frequencies for
internal resonances

» Large: accommodate laser
beam spot without losses

> Massive: mitigate response to
radiation pressure fluctuations

» Near-perfect mirrors



OTHER ASPECTS AND CHALLENGES



Gaussian beams

Q Laser beam is fundamental mode of transverse
electromagnetic mode TEM,,

2 2
E(r,z) = Ey dl exp( ! )exp(—z’kz—ik - —|—i(j(z))

w(z) w?(2) 2R(z) -
» Amplitude in transverse plane follows Gaussian profile y
> Shape of beam driven by waist Wy , /\
> Beam radius 2\’ o= 0
w(z) = wy \/1 -+ (g) pY

2
» Wavefront radius of curvature R(z) ==z [1 + (Z?R) ]

0 Fabry-Perot geometry needs to match
beam mode L
Rl ~ Rg ~ R(i§)

0 Bi-concave geometry allows large beams
on mirrors (minimize thermal noise)




Mirrors

0 Large and heavy optics Blanks of ultra-pure fused silica
» ~ 35 cm diameter, 40 kg » Sapphire in KAGRA
0 Right geometry Stringent polishing requirements
0 Near-perfect surface quality Coating uses ion beam sputtering
> Flatness < 1 nm, roughness <1 A Metrology

» Uniform coatings Clean environment
0 Low absorption <1 ppm

T T T T T L
015
o
005
2

0os 1
ot

-
015 _
a1 a1

o ] s ni nis an a1 £m
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Thermal compensation

0 Aberrations in the optics

» Manufacturing errors in mirror
curvature
> High optical power = thermal lensing,
thermal expansion of mirrors
» Substrate/coating absorption, point
absorbers

0 Need a thermal compensation
system

> Sensors to measure wavefront
distortions

> Actuators
= Ring heaters to tune mirror curvature
= CO, lasers to shine compensating heating

pattern

— Shining onto mirrors would introduce noise
= compensation plates

NE

North Arm

West Arm

SIB Detection

— Injection




Scattered light

O Even high-quality optics will scatter small amount of light

0 Part of scattered light may recombine with main beam
» Light scattered by mirrors reflected off beam tube
» Backscattering from auxiliary optics

O Noise due to phase modulation by movement of reflective
or scattering surface

> Non-linear coupling if movement > wavelength = high-frequency
conversion of seismic noise

> Broadband excess noise and transient noise

Minimize amount of scattered light
0 Baffles to trap scattered light

0 Model and dump spurious beams
0 Size and quality of optics

0 Clean environment

Minimize coupling of scattered light
0 Seismic and acoustic isolation of sensitive optics
0 Optical benches suspended in vacuum




Parametric instabilities

Mechanical Mode

o _ - -
0 Opto-mechanical interaction '
» Energy transfer from interferometer fundamental Resonant s -

Scattered -

optical mode into mirror mechanical mode Field

= Radiation pressure
» Modulation of fundamental field by excited mechanical e Radiation
: Pressure

mode
> Risk of instability if mechanical mode and optical Phys. Rev. Lett. 114, 161102 (2015)

mode have coincident resonant frequencies
» Risk increases with optical power

Q Observed in advanced LIGO

0O Various strategies possible
» Tune cavity geometry to avoid instability
» Passive or active damping of mechanical modes

Arm Cavity
Field

0o
u
o

1000

100

845

Frequency [Hz] (16,384 Hz sample rate)
ASD [1/VHz)

840 "
0 1000 2000 Time[s] 4000 5000



Quantum noise (

T

LIGO H1
Interferometer

to squeezed vacuum source
feed-back to PUMP laser frequency
for squeezing angle control

Arm Cavity (4 km)

Squeezing Angle
Fluctuation of Fluctuation of - Control Photodiode
photons reflecting photons on /7/\ ¥
from a suspended photodetector Power| B (s
Vacuum Envelope B ..

-

[Quadrature,
Phase

Quadrature,
Phase

ole

In-Phase

(a) Coherent state of light

In-Phase

0 SQL can be beaten
by reducing noise
in one of the two
quadratures of

mirror causes mirror results in Fluctuating : * Output Output 1
motion power measurement : AntiSst,n;rrtﬂetric :lTarIa{Jj[ay {hsﬂlode (b) Vacuum state Va CU U m f| e I d, at
. Isolator eaner
oL P (R WP FXL PO Iy TAR e, < s T h € expense Of t h e
Farad
L AN [C- other
Rl vy rw—— LTAET ; Photodiode

Arm Cavity (4 km)

Frequency (Hz)

N - squeezed vacuum & ‘(c) Squeezed vacuum stateJ > P h a Se : red u Ce

99 X 10 - — S , Power " frequency shifted control beam . .

2f Reference (without squeezing) | u‘ Recycling b Squeezed vacuum source S h Ot n O I S e
1.8 = = Quantum noisc model (without squeczing) 1 Mirror @ ; T
i\ Quantum-enhanced sensitivit 2 1
i 1 .7« Y » Amplitude:
14F | ] ;
- : fi hifted . .
MR | ; |t e reduce radiation
5 to squEﬁzed \‘fackulum source: i &, .
=W ARIes pressure noise
2 ) H1LASER i 4)
.g 03 hh] - A OPO green pump beam from squeezing angle
= from H1 laser:~ control photodiode
.E phase lock loop  feed-back to PUMP
& 0.6 b with PUMP laser laser frequency )
3 i
N
~ -~ - L] L] L]
IR e QO Use filtering cavity to apply frequency-
L] L]
. dependent phase shift to provide

phase squeezing at high frequency and
amplitude squeezing at low frequency
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High optical power : recap

0 High power needed to lower shot noise

0 High-power laser 0 Challenges of high power
> Mono-mode . > Thermal aberrations
> Power stabilized 0P/P ~ 107" /v Hz > Scattered light

> Frequency stabilized dv ~ 107° Hz/vHz
» Controlled beam pointing

» Achieved through combination of active
and passive stabilization

» Parametric instabilities
» Radiation pressure noise
» Mirror alignment control

VACUUM INJ

0 Squeezing is alternative/complementary
approach to lower shot noise

» Needs to be frequency-dependent to avoid
increasing radiation pressure noise




Gravity gradient noise

m— (JUantum noise

\ || b
.i...| we— Coating Brownian noise
0 Also called Newtonian noise ot oo |
. . . . - 10_22‘-- N Excess Gas
0 Direct gravitational coupling of mass density fluctuations to — EN\ oo
suspended mirrors = W S
> Dominated by seismic surface waves £ 107
O Not limiting in current detectors, but will be for next generation R L\ o
0 Cannot be shielded 102
> Monitor with array of seismometers, model and subtract - 4
10 10 10 10
» Quieter underground Frequency [Hz]
@ gravitational @ w
4 ~ attraction &
—> —> —> .

propagation of surface wave
on the surface of the earth
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Real-time control

Q Suspended mirrors still have low-frequency movements comparable to
laser wavelength

0 Interferometer must be kept at right working point

» Cavities on resonance, ~dark fringe
» Mirror longitudinal and angular degrees of freedom must be controlled in real
time — aka locking and alignment

0 Complex set of feedback loops

» Error signals
= Laser beam is phase modulated to create sidebands with behavior different from carrier
= Sidebands beating with carrier provides error signals

» Electromagnetic actuators
= Coil-magnet pairs



Detector calibration

Data analysis needs phase h(t)
measurement to be translated into
gravitational-wave strain signal

Clocks synchronized on

: . : Calibration
Part of GW signal is in control signals GPS time
> Due to feedback loops maintaining
interferometer at working point Q Interferometer response calibrated

against known mirror displacements

Typical accuracy > Laser wavelength as a reference

» ~2-5% on amplitude, ~2-4 deg on phase » Radiation pressure from auxiliary laser

beams reflected off mirrors, aka photon
_ . _ calibrator (PCal)
h(t) reconstruction typically includes » Gravitational coupling to nearby rotating
some noise subtraction, aka data masses, aka Newtonian calibrator (NCal)

cleaning



FROM CURRENT DETECTORS TO THE NEXT GENERATION
WHY? HOW?
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Observing runs and upgrades

Advanced Virgo AdV+ Phase | AdV+ Phase |
aLlGO A+
Updated == O1 02 == O3 = O4 05 06

2024-02-14

80 100 100-140 150 160+ 240-325

Mpc  Mpc Mpc Mpc Mpc
LIGO [] [ ] By A# concept “Ultimate”

upgrades to reach
30 40-50 40-80 .
See text : infrastructure
: Mpc Mpc Mpc : Virgo nEXT -
V|rgo ] B -
0. 7 1—-3 = 1 0 25'1 28 180 * Q4a entries are ;‘:‘-\-i‘-nf:::ryofarzjiggge?;::d=o:|i:l,eTntaI =2
KAG RA Mpc Mpc Mpc Mpc 160
T 1 1 1 T 1 1 1 1 1 T T I I T I 120
G2002127-v23 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 5w O1 02 03a | 03b O4a

0 Network alternates observing runs and upgrades B /
0 Rate of detections increases with sensitivity

0 Ultimately, efforts to improve sensitivity will approach infrastructure " /
limits . —

0 100 200 300 400 500 600 700 800 900 41
UG0.G2302098-v11 Time (Days) Credit: LIGO-MirgE-KAGRA Coltaborations

Cumulative Detections/Candidates
=]
(=]

B
©




Projects in new infrastructures

X
i

1-!'- 0

/"\

74 /fx ' .
l = Einstein Telescope, Europe, Cosmic Explorer, US, 40 and 20 km
10 km underground triangle ; L-shaped surface observatories

0 New infrastructures allow baselines longer by an order of magnitude
» GW signal increases with length
» Interferometer response and therefore noise levels scale non-trivially with length
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Scaling of fundamental noises with arm length

Noise Scaling Remarks

Coating Brownian 1/13'%  Fixed cavity geometry
Substrate Thermo-Refractive  1/L*  Fixed cavity geometry
Suspension Thermal 1/L,1 Horizontal, vertical noise
Seismic 1/L,1  Horizontal, vertical noise
Newtonian 1/L

Residual Gas Scattering 1/13'*  Fixed cavity geometry
Residual Gas Damping 1/L

*Quantum Shot Noise 1/1'2  Fixed bandwidth
*Quantum Radiation pressure 1/I1%?  Fixed bandwidth
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Cosmic Explorer: a bigger LIGO

Quantity Units LIGO A+ CE CE (2 um)
Arm length km 4 40 40
Laser wavelength um (1 1 ) Alternative path
Arm power MW 0.8 1.5 3 if unexpected
Squeezed light dB 6 10 10 hall P ,
kSusp. point at 1 Hz pm/sz 10 0.1 0.1 C alienses In
: = — = incremental
Test masses Material Silica Silica Silicon approach based
Mass kg 40 320 320 on current
Temperature K 293 293 123
technology
Suspensions Total length m 1.6 4 4
Total mass kg 120 1500 1500
Final stage blade No Yes Yes
Newtonian noise Rayleigh wave suppr. dB 0 20 20
Body wave suppr. dB 0 10 10
Optical loss  Arm cavity (round trip) ppm 75 40 40

SEC (round trip) ppm 5000 500 500
44




Cosmic Explorer target sensitivity

Strain noise / Hz™!/2

10—22 :

10-23 4

10724 -

1075 4

10—26

A+ Total
mmm CE Total
mmm (Juantum Vacuum

| mm Seismic

3 s Newtonian

= Suspension Thermal

mmm  (Coating Thermal

mmss Substrate Thermal
Residual Gas

BT

Frequency / Hz

s
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Einstein Telescope: xylophone strategy

Low and high frequencies have conflicting

requirements

» High optical power needed to decrease shot noise
but will increase radiation pressure noise

» High power comes with challenges + not easily
compatible with low-temperature operation

Combine two detectors dedicated to LF and HF

Strain [1/sqrt(Hz)]

--- ETLF
--- ETHF
= ET sum H

— — L -+ 111

4oL Lidng
+ + i+
LLLidand
e
1l 1 1111

=5 =+ =
d ol add L)oo ol
I
1

—-ldHF = = F = + + i+
N Ny [y Ny S S A N A
[EERY [
AN 1

yczcrrrlzu
— —F —F + + I+

- =k = L L il

Parameter ET-HF ET-LF

Arm length 10 km [0km

Input power (after IMC) 500 W (3W )

Arm power IMW 18 kW
Temperature 290K 10-20K

Mirror material fused silica silicon

Mirror diameter / thickness 6Z2Zcm/30cm [ Tcm
Mirror masses 200 kg 211 kg

Laser wavelength 1064 nm
SR-phase (rad) tuned (0.0) detuned (0.6)

SR transmittance 10 %o 20 Yo

Quantum noise suppression  [req. dep. squeez. [req. dep. squeez.
Filter cavities 1x300m 2x1.0km
Squeezing level 10dB (effective) 10 dB (effective)
Beam shape TEMgg TEMgo

Beam radius 12.0cm 9cm

Scatter loss per surface 37 ppm 37 ppm

Seismic isolation SA, 8 m tall mod SA, 17 m tall
Seismic (for f > 1 Hz) 5-10719m/ f? 5:1079m/ f?
Gravity gradient subtraction none factor of a few

10

1

10°
Frequency [Hz]

10° 10
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Einstein Telescope: multiple detectors

2 Three (pairs of) detectors arranged in a triangle

X
l"
%" (=== 1064 nm beam )
o = |550 nm beam
g [] fused silica optics
, [] silicon optics
’ \-

— R ACE A E— R — i

47



Einstein Telescope: target sensitivity
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Tomorrow...

PART Il: SOURCES, DATA ANALYSIS, SCIENCE
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