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GRAVITATIONAL WAVES AND INTERFEROMETRIC 
DETECTORS
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Gravitational Waves

 A prediction of General Relativity 
(Einstein, 1916)

 Perturbations in space-time metric
 Generated by mass acceleration
 Transverse, quadrupolar,                         

2 orthogonal polarizations
 Propagate at speed of light
 Amplitude decreases with distance

 Source luminosity
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asymmetric compact relativistic

Astrophysical 
sources

h < 10-21 on Earth
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Science Impact
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 Gravitational waves are generated in some of the most energetic 
events in the Universe
 Direct probe of the event dynamics

 Gravitational waves are a tool to probe gravitation in a new regime
 Gravitation at the heart of some of the great enigma of modern physics

Sources

Astrophysics



Gravitational-wave spectrum
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Ground-based detectors: history
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2016

1982

2000s : 1st generation
 LIGO, Virgo

 2010s & 2020s : 2nd generation
 Advanced LIGO, Advanced Virgo
 + KAGRA

 3rd generation

Insufficient sensitivity

Discovery!

Deep observation of Universe with GW

1960s & 1970s
 Pioneering experimental work

 1980s & 1990s

 Design and construction of long-baseline interferometers

Sensitivity not quite 
good enough

Gravitational waves exist!

Toward routine GW observation 
Multi-messenger astronomy









A network of detectors
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LIGO Hanford, 4 km (US) LIGO Livingston, 4 km (US)

Virgo, 3 km (Italy) KAGRA, 3 km (Japon)



GW coupling to Michelson interferometer
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See 
movie

https://www.youtube.com/watch?v=tQ_teIUb3tE





GW coupling to Michelson interferometer (cont.)

 Space-time metric
 Perturbation to metric due to GW

 Accumulated round-trip phase along x axis
 For GW with period >> round-trip light travel time

 General case includes term
 Accumulated round-trip phase along y axis
 Difference in phase shift between x and y arms
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Detector antenna pattern

 GW interferometric 
detector has
 Broad angular 

response
 Blind spots
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+ polarization x polarization unpolarized GWs



Sensitivity curve
 Frequency-domain characterization of (stationary) noise: noise 

power spectrum, aka (one-sided) power spectral density (PSD)

 Noise power spectrum is Fourier transform of noise autocorrelation

 PSD has unit           , amplitude spectral density (ASD) has unit 
[strain] 

 Related to mean square of noise

 Related to signal-to-noise ratio (SNR)
 Usually characterized by BNS range

 Typical detection reach for binary neutron star mergers with SNR 8
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Anatomy of sensitivity curves
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Constantly evolving
e.g. 

Initial Virgo
2003-2011

Limited by 
fundamental noise 

sources…
… but not only !

LIGO Livingston 2020

Advanced 
Virgo



THE MAIN NOISE SOURCES AND HOW THEY DRIVE 
THE BASIC FEATURES OF DETECTORS
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Quantum noise (i)

 Power at the output port of Michelson interferometer

 How small a change in output power can be detected?
 Photon counting statistics follows Poisson distribution
 Arrival rate of photons

 Shot noise spectrum
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Minimizing shot noise

 Shot noise limit to phase difference measurement

 When            ,       is minimal for 
 Michelson tuned on the dark fringe

 In practice,            and we want the signal          to vary linearly with
 Small offset with respect to dark fringe

 Sensitivity to GW signal
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Wavelength set by availability 
of high-power lasers and optics

Arm length set by infrastructure 
(money) and configuration tweaks

Input optical power set by 
laser and configuration tweaks



 Two mirrors with                               in the case of 
GW detectors 

 Cavity characterized by its finesse

 Resonance when
 The storage time increases from              to
 The phase shift of the reflected field                          

around the resonance is amplified by factor

 Cavity acts as low-pass filter, with cutoff frequency

 Explains high-frequency shape of sensitivity curve

Fabry-Perot cavities
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Power recycling

 With interferometer on dark fringe, 
input power is reflected back

 Add recycling mirror to make 
resonant cavity with interferometer

 With                      and gain of ∼50, 
on beam-splitter
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Signal recycling

 Signal recycling or resonant sideband extraction
 To reach given optical power in Fabry-Perot 

cavities, high finesse desirable
 Reduce absorption in input mirrors and associated 

thermal distortions 
 Reduce bandwidth 

 Phase modulation due to GW signal creates 
sidebands in optical field at GW frequency, which 
do not cancel out at output port
 Add mirror to form resonant cavity with input mirrors 

for GW sidebands
 Cavity increases effective transmission of input mirrors 

for GW signal
 Broaden bandwidth 
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Shot noise decreases with                   
Radiation pressure noise 
increases with 

Quantum noise (ii)
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https://10m.aei.mpg.de/standard-quantum-limit-sql/

 Radiation pressure 
fluctuations
 Displacement noise 

for simple Michelson

Mirror mass

 Envelope of minima in 
quadratic sum of shot noise 
and radiation pressure noise 
as input power varies defines 
standard quantum limit (SQL)

 SQL can be overcome with 
quantum optics techniques…



Seismic noise

 Low-frequency limit to all ground-based interferometers
 Earth tides

 Length changes of ∼100  µm over 3 km baseline
 Compensated by long-range actuators

 Secondary microseism
 Amplitude ∼1 µm
 Canceled by feedback systems

 Spectrum above ∼1 Hz

 High-performance isolation needed
 Active, based on seismic vibration sensors
 Passive

 Horizontal-vertical couplings
 for 3 km baseline
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Passive vibration isolation
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f -2



Vibration isolation
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Horizontal ground to mirror 
motion transfer functions



Thermal noise

 Mirrors in thermal equilibrium
 Dissipation-fluctuation relationship  noise
 Multiple sources of noise
 Mirror thermal noise – bulk and coating
 Brownian noise
 Thermo-optic noise due to temperature fluctuations

– Random thermal expansion
– Random change in refractive index

 Suspension thermal noise
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Mirror thermal noise

 Displacement noise 
power spectrum
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Temperature

Laser beam 
spot size

Mirror substrate 
loss factor (1/Q)

 Best substrates have
 Interfaces are critical 



Suspension thermal noise

 For a pendulum of mass m and length l, 
suspended by 4 wires/fibers

 Mirrors held by thin glass fibers
 Monolithic suspensions
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tension



 Displacement noise power spectrum

 Coatings have excellent optical properties but poor mechanical properties
 Dominant source of thermal noise

 Level comparable to quantum noise around 100 Hz
 Major R&D effort

Coating thermal noise
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Temperature

Laser beam spot size

Coating loss factor

Coating thickness



Residual Gas Noise 

 Phase noise from fluctuations in column 
density of gas along interferometer arms
 Ultra-high vacuum needed
 Residual pressure dominated by out-gassing of H2

from beam tubes after bake-out to remove H2O 
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Recap of basic features

 Suspensions
 Decouple mirrors from ground to allow 

free response to GW
 Isolate mirrors from ground vibrations
 Hold mirrors without introducing extra 

thermal noise
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 Interferometer
 Michelson interferometer on          
∼ dark fringe

 Fabry-Perot cavities
 Power and signal recycling cavities  Test masses

 Low mechanical loss factors
 Shape: high frequencies for 

internal resonances
 Large: accommodate laser 

beam spot without losses
 Massive: mitigate response to 

radiation pressure fluctuations
 Near-perfect mirrors

 Infrastructure
 Ultra-low pressure in beam 

tubes and vacuum chambers



OTHER ASPECTS AND CHALLENGES
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Gaussian beams

 Laser beam is fundamental mode of transverse 
electromagnetic mode TEM00

 Amplitude in transverse plane follows Gaussian profile
 Shape of beam driven by waist 
 Beam radius

 Wavefront radius of curvature
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 Fabry-Perot geometry needs to match 
beam mode 

 Bi-concave geometry allows large beams 
on mirrors (minimize thermal noise)



Mirrors
 Large and heavy optics
 ∼ 35 cm diameter, 40 kg

 Right geometry
 Near-perfect surface quality
 Flatness < 1 nm, roughness < 1 Å
 Uniform coatings

 Low absorption < 1 ppm
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 Blanks of ultra-pure fused silica
 Sapphire in KAGRA

 Stringent polishing requirements
 Coating uses ion beam sputtering 
 Metrology
 Clean environment



Thermal compensation

 Aberrations in the optics
 Manufacturing errors in mirror 

curvature
 High optical power  thermal lensing, 

thermal expansion of mirrors
 Substrate/coating absorption, point 

absorbers
 Need a thermal compensation 

system
 Sensors to measure wavefront

distortions
 Actuators

 Ring heaters to tune mirror curvature
 CO2 lasers to shine compensating heating 

pattern
– Shining onto mirrors would introduce noise               
 compensation plates
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Scattered light
 Even high-quality optics will scatter small amount of light
 Part of scattered light may recombine with main beam

 Light scattered by mirrors reflected off beam tube
 Backscattering from auxiliary optics

 Noise due to phase modulation by movement of reflective 
or scattering surface
 Non-linear coupling if movement > wavelength  high-frequency 

conversion of seismic noise
 Broadband excess noise and transient noise

33

Minimize amount of scattered light
 Baffles to trap scattered light
 Model and dump spurious beams
 Size and quality of optics
 Clean environment

Minimize coupling of scattered light
 Seismic and acoustic isolation of sensitive optics
 Optical benches suspended in vacuum



Parametric instabilities

 Opto-mechanical interaction
 Energy transfer from interferometer fundamental 

optical mode into mirror mechanical mode
 Radiation pressure
 Modulation of fundamental field by excited mechanical 

mode
 Risk of instability if mechanical mode and optical 

mode have coincident resonant frequencies
 Risk increases with optical power

 Observed in advanced LIGO
 Various strategies possible
 Tune cavity geometry to avoid instability
 Passive or active damping of mechanical modes
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Phys. Rev. Lett. 114, 161102 (2015)



 SQL can be beaten 
by reducing noise 
in one of the two 
quadratures of 
vacuum field, at 
the expense of the 
other
 Phase: reduce 

shot noise
 Amplitude: 

reduce radiation 
pressure noise

Quantum noise (iii)
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 Use filtering cavity to apply frequency-
dependent phase shift to provide 
phase squeezing at high frequency and 
amplitude squeezing at low frequency



High optical power : recap

 High power needed to lower shot noise
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 Challenges of high power 
 Thermal aberrations
 Scattered light
 Parametric instabilities
 Radiation pressure noise
 Mirror alignment control

 Squeezing is alternative/complementary 
approach to lower shot noise
 Needs to be frequency-dependent to avoid 

increasing radiation pressure noise

 High-power laser
 Mono-mode
 Power stabilized
 Frequency stabilized
 Controlled beam pointing
 Achieved through combination of active 

and passive stabilization



Gravity gradient noise

 Also called Newtonian noise
 Direct gravitational coupling of mass density fluctuations to

suspended mirrors
 Dominated by seismic surface waves

 Not limiting in current detectors, but will be for next generation 
 Cannot be shielded

 Monitor with array of seismometers, model and subtract
 Quieter underground
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Real-time control

 Suspended mirrors still have low-frequency movements comparable to 
laser wavelength

 Interferometer must be kept at right working point
 Cavities on resonance, ∼dark fringe
 Mirror longitudinal and angular degrees of freedom must be controlled in real 

time – aka locking and alignment
 Complex set of feedback loops
 Error signals

 Laser beam is phase modulated to create sidebands with behavior different from carrier
 Sidebands beating with carrier provides error signals

 Electromagnetic actuators
 Coil-magnet pairs
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Detector calibration
 Data analysis needs phase 

measurement to be translated into 
gravitational-wave strain signal
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 Interferometer response calibrated 
against known mirror displacements
 Laser wavelength as a reference
 Radiation pressure from auxiliary laser 

beams reflected off mirrors, aka photon 
calibrator (PCal)

 Gravitational coupling to nearby rotating 
masses, aka Newtonian calibrator (NCal)

Calibration Clocks synchronized on 
GPS time Part of GW signal is in control signals 

 Due to feedback loops maintaining 
interferometer at working point

 h(t) reconstruction typically includes 
some noise subtraction, aka data 
cleaning

 Typical accuracy
 ∼2-5% on amplitude, ∼2-4 deg on phase



FROM CURRENT DETECTORS TO THE NEXT GENERATION
WHY? HOW?
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Observing runs and upgrades
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Virgo_nEXT
concept 

A# concept 

O6

Advanced Virgo AdV+ Phase I AdV+ Phase II

aLIGO A+

 Network alternates observing runs and upgrades
 Rate of detections increases with sensitivity
 Ultimately, efforts to improve sensitivity will approach infrastructure 

limits

“Ultimate” 
upgrades to reach 

infrastructure 
limit



Projects in new infrastructures

 New infrastructures allow baselines longer by an order of magnitude
 GW signal increases with length
 Interferometer response and therefore noise levels scale non-trivially with length
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Einstein Telescope, Europe, 
10 km underground triangle

Cosmic Explorer, US, 40 and 20 km 
L-shaped surface observatories



Scaling of fundamental noises with arm length
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Cosmic Explorer: a bigger LIGO
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Alternative path 
if unexpected 
challenges in 
incremental 
approach based 
on current 
technology



Cosmic Explorer target sensitivity
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Einstein Telescope: xylophone strategy
 Low and high frequencies have conflicting 

requirements
 High optical power needed to decrease shot noise 

but will increase radiation pressure noise
 High power comes with challenges + not easily 

compatible with low-temperature operation
 Combine two detectors dedicated to LF and HF
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Einstein Telescope: multiple detectors

 Three (pairs of) detectors arranged in a triangle
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Einstein Telescope: target sensitivity
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PART II: SOURCES, DATA ANALYSIS, SCIENCE
Tomorrow…
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