EHT imaging of the shadows of supermassive black holes. III. VLBI with mm telescopes, calibration!

Today

• Overall Objective

•Introduce the practices of our trade: what it takes to measure the shadow of supermassive black holes

• Understanding your telescope

- Locations
- Dishes
- Receivers
- Digitisation
- Transport
- Correlation
- Data products
- Instrument calibration
- •On sky calibrators
- Self calibration
- Closure properties
- Polarisation
- Last lecture:
 - Interpretation, calibrating gravity

Event Horizon Telescope

- 8 telescopes at best sites
 - working together
 - •Not positioned for this purpose
- Recording high bandwidth
 - •32 Giga bit per sec
 - •64 Gbps later
- Good weather • around the world

EHT members at telescopes

SIGRAV Vietri sul Mare 19-23 Feb 2024

High sites, small dishes

· Atmosphere blocks millimeter waves

- \cdot Mostly pressure broadened water and ozone lines
- \cdot Observing conditions characterised by water vapour column
 - \cdot halfway space...

· Other requirements:

- \cdot Dishes need to be very precise
- $\cdot \operatorname{Receivers}$ very small and delicate

\cdot In addition for EHT

- \cdot Accurate (and expensive) maser clocks
- \cdot We must observe close to horizon very regularly
- $\cdot \operatorname{Requires}$ good weather
 - $\cdot\, across$ the globe
- \cdot Some of our telescopes are interferometers

More telescopes

- GLT added to 2018 campaign
 - NOEMA, Kitt Peak in 2021, 2022
 - 2025+ possibly more observatories:
 - Owens Valley, Haystack, South-Korea, Africa Millimeter Telescope (Dutch project!), Llama (Argentina)
 - ngEHT project to build dedicated telescopes
- Option to use higher frequency in 2024
 - 345 GHz: 1.5x better resolution
 - Time sampled images
- To space for more targets and photon rings

African Millimeter Telescope projected on Gamsberg, Namibia

SIGRAV Vietri sul Mare 19-23 Feb 2024

Lucky in 2017

- Observe strategy
 - •Central go/no-go decisions based on local weather

• Interleave BH target with other source

• For calibration purposes (and science)

Good weather

- •Still results in 10s coherence times
- Every 10s the phases fluctuate to destroy signal

Table 1				
Median Zenith Sky Opacities (1.3 mm) at EHT Sites during the 2017 April Observations	_			
Median Zenith $\tau_{1.3 \text{ mm}}$				

Station	Median Zenith $\tau_{1.3 \text{ mm}}$				
	Apr 5	Apr 6	Apr 7	Apr 10	Apr 11
ALMA/APEX	0.06	0.04	0.05	0.03	0.06
SMA/JCMT	0.10	0.07	0.09	0.05	0.08
PV	0.18	0.13	0.14	0.10	0.15
LMT	0.13	0.16	0.21	0.26	0.24
SMT	0.21	0.28	0.23	0.19	0.16
SPT	0.04	0.05	0.07	0.08	0.07

SIGRAV Vietri sul Mare 19-23 Feb 2024

All telescopes require same receiver bands

· Millimeter bands require mixing before amplification

- $\cdot\,\text{Receivers}$ and LO generation very delicate
- $\cdot \operatorname{Mixes}$ down to frequency for digitiser
- \cdot 4 x 4GHz output for each receiver

- $\cdot\,$ Often double for 2 circulair polarisations
- \cdot but linear at ALMA...

Figure 2.15: Block diagram of Band 9 cartridge (left) and a schematic image (right). Note that there are only two IF outputs, one from each polarization in this DSB receiver. The Band 9 receiver was built at SRON in the Netherlands.

Then digitise...

• Must capture large BW for sensitivity • But only useful when same bandwidth at all telescopes • Digitise before transport • Example: • 4GHz (at IF band) • Requires 8 GHz sampling (Nyquist) • Requires 16 Gbps (2 bit sampling!) • In 8hr: 52TB receiver maser & 10 MHz L.C distribution (1 LCP, 1 RCP) (1 LCP, 1 RCP) LSB USB BDC BDC GPS receiver synthesizer low Rx LSB high low Rx USB high & distribution (2.048 GHz) ×2 (1 LCP, 1 RCP) (1 LCP, 1 RCP) 2 GHz each (1 LCP, 1 RCP) (1 LCP, 1 RCP) 2 GHz each 2 GHz each GHz each R2DBE R2DBE R2DBE R2DBE Rx LSB, BDC high Rx USB, BDC low Rx USB, BDC high Rx LSB, BDC low ×2 8 Gbps each ×2 8 Gbps each ×2 8 Gbps each 8 Gbps each Mark 6 Mark 6 Mark 6 Mark 6 Rx USB, BDC low Rx USB, BDC high Rx LSB, BDC low Rx LSB, BDC high BDCs, R2DBEs, ----- analog control 1 GbE Mark-6s timing computer switch communication - data

Figure 8. EHT digital VLBI backend as installed at the Institut de Radioastronomie Millimétrique (IRAM) PV 30 m telescope in Spain. The

Correlator

- Correlators must deal with data from telescopes
 - \cdot Must keep up with data rate
- \cdot Deliver user product
 - $\cdot\,\text{May}$ determine sensitivity of interferometer
 - \cdot Spectral resolution
 - \cdot Time resolution
 - $\cdot\,\text{And}$ resulting Field of view

live

OINT INSTITUTE FOR VLBI IN EUROP

Correlator principle

Ce Lag domain Strong 1 EPO41B Strong 1 Strong 1

Frequency

• Put in range of 'test' delays, correlate, accumulate

 $\cdot \operatorname{Results}$ in delay spectrum, or FT to frequency

Continuum source

Stringent constrains on geometry

- \cdot Same errors affect phase rate and delay
 - \cdot 1° of phase over 16 MHz = 173ps (ps = 10⁻¹²s)
 - · To keep both clocks stable over 10min and 500 MHz \approx 1:1015
 - \cdot Expensive maser clocks to make atmosphere limiting factor
 - ·And 16ps \approx 5mm required accuracy over 1000km
- The natural fringe rate is high for long baselines

$$\phi_{LO} = \omega_{LO} \hat{\tau_g} = \omega_{LO} \frac{d\tau_g}{dt} t = \omega_{LO} \frac{d\vec{B} \cdot \vec{s} / c}{dt} t$$

- \cdot This comes out at 100 kHz for VLBI
- $\cdot Small \ errors \ in \ model \ leave \ mHz \ fringe \ rate$
 - \cdot And more at high frequency
 - \cdot Example small few mas position error

Adapted from Sovers, Fanselow, and Jacobs Reviews of Modern Physics, Oct 1998

Item	Approx Max.	Time scale
Zero order geometry.	6000 km	1 day
Nutation	~ 20 "	< 18.6 yr
Precession	$\sim 0.5 \operatorname{arcmin/yr}$	years
Annual aberration.	20"	1 year
Retarded baseline.	20 m	1 day
Gravitational delay.	$4 \text{ mas} @ 90^{\circ} \text{ from sun}$	1 year
Tectonic motion.	10 cm/yr	years
Solid Earth Tide	50 cm	12 hr
Pole Tide	2 cm	$\sim 1 \text{ yr}$
Ocean Loading	2 cm	12 hr
Atmospheric Loading	2 cm	weeks
Post-glacial Rebound	several mm/yr	years
Polar motion	0.5 arcsec	~ 1.2 years
UT1 (Earth rotation)	Several mas	Various
Ionosphere	$\sim 2 \text{ m at } 2 \text{ GHz}$	All
Dry Troposphere	2.3 m at zenith	hours to days
Wet Troposphere	0-30 cm at zenith	All
Antenna structure	<10 m. 1cm thermal	
Parallactic angle	0.5 turn	hours
Station clocks	few microsec	hours
Source structure	$5~\mathrm{cm}$	years

Output data

· Usually presented to astronomer as $V_{ij}(v,t)$

- \cdot Cross (and auto) correlation spectra
- ·Sampled at visibility dump time, integration time
 - \cdot Can be quite long 10 30s for short baselines

\cdot Need a lot of overhead information to be used for calibration and processing

- · IF labels, and polarizations
- \cdot Time tags
- · frequency information, edge and increment
- ·Antenna indexes
- \cdot u,v,w coordinates
- ·Telescope pointing and source labeling
- · Maybe other details of correlator model
- · Format for transport: FITS
 - But calibration software depends critically on content...

Calibration

- \cdot Three levels of calibration, and editing also important
- · A priori and built in:
 - \cdot Pointing, antenna gain, system temperatures
 - ·Antenna positions, time, frequency
 - \cdot Geometrical model, delay, uv coordinates

\cdot Cross calibration

- \cdot Known sources, bright, simple structure, accurate position
- \cdot Often making assumptions on stability instrument, sky
- \cdot Sometimes done by observatory, sometimes astronomer

 $\cdot \operatorname{Can}$ be critical for the succes of the experiment

\cdot Self-calibration

- \cdot Iterative process done by astronomer
- ·Let's say it is 'heuristic'...

Antenna based calibration

- Want to measure the visibility produced by the sky intensity
- Practice is signals corrupted by instrumental and propagation effects

 $\tilde{V}_{ij}(t) = G_{ij}V_{ij}(t) + \varepsilon_{ij} + \eta_{ij}$

• Assume G being dominated by antenna based effects:

$$G_{ij} = g_i(t) g_j^*(t) = a_i(t) a_j(t) e^{i(\theta_i(t) - \theta_j(t))}$$

 \cdot There should be no baseline-based error for robust correlators

• Use known source to solve for complex antenna gains

 \cdot Intuitive to talk about antenna amplitude and phase

- \cdot Point source (unresolved) with known (or constant) flux
- ·With N antennas need to solve for 2N-1 unknowns
 - \cdot And we have N(N-1) measurements (complex)
 - \cdot S/N considerations and coherence time

For N=4, 6 baselines responses are measured: r₁₂, r₁₃, r₁₄, r₂₃, r₂₄, r₃₄

Normal practices include iterative self-calibration

Closure quantities

· Important property when effects are antenna based $V_{ij} = g_i \cdot g_j^* \hat{V}_{ij}$

 \cdot Both instrumental and atmospheric phases:

$$\phi_{ij} = \hat{\phi}_{ij} + \eta_i - \eta_j$$

- $\cdot \, \text{Can}$ form closure phase on triangle
 - $\cdot\,\text{All}$ antenna-based errors drop out

$$C_{ijk} = \phi_{ij} + \phi_{jk} + \phi_{ik} = \hat{\phi}_{ij} + \hat{\phi}_{jk} + \hat{\phi}_{ik}$$

- · Similar for amplitude and 4 tels
- Important constraint for
 - \cdot self-calibration
 - \cdot hybrid mapping
 - RML methods can work directly with this • But require pos and total flux to be fixed
 - · Data quality control

Example comparison 2017 vs 2018

SIGRAV Vietri sul Mare 19-23 Feb 2024

• Comparing old an new software

- •Some non-standard processing
- Amplitudes from overlapping uv-tracks
- Constrained estimates of zero-spacing

• Several engineering releases FITS-IDI (correlator output)

Flagging bad data is a major effort in this process "Bad data is worse than no data"

SIGRAV Vietri sul Mare 19-23 Feb 2024

120 /41

Polarization

- EM waves (including radio) have E- and B components
- In radio interferometry measure two orthogonal E-field components
 - \cdot circular (RL) or linear (XY)
 - · Linear polarization: E_x and E_y are unequal
 - ·Circular polarization: \vec{E} rotates
 - · Combined: \vec{E} traces an ellipse
- \cdot Form Stokes I,Q,U,V from cross hands
- · For example in circular basis:

$$I = \left\langle E_r E_r^* \right\rangle + \left\langle E_l E_l^* \right\rangle = \left\langle A_r^2 \right\rangle + \left\langle A_l^2 \right\rangle$$
$$Q = \left\langle E_r E_l^* \right\rangle - \left\langle E_l E_r^* \right\rangle = \left\langle 2A_r A_l \cos(\delta_{rl}) \right\rangle$$
$$U = -i \left\langle E_r E_l^* \right\rangle + i \left\langle E_l E_r^* \right\rangle = \left\langle -2A_r A_l \sin(\delta_{rl}) \right\rangle$$
$$V = \left\langle E_r E_r^* \right\rangle - \left\langle E_l E_l^* \right\rangle = \left\langle A_r^2 \right\rangle - \left\langle A_l^2 \right\rangle$$

SIGRAV Vietri sul Mare 19-23 Feb 2024

More Stokes

- \cdot Stokes I measures total intensity
- Stokes Q and U measure linear polarization
 - . Fractional linear polarization: $p = \sqrt{Q^2 + U^2}/I \le 1$
- Stokes V measures circular polarization
 - Fractional circular polarization: $v = ||V||/I \le 1$
- \cdot Degree of polarization:

 $P = \sqrt{Q^2 + U^2 + V^2}/I$

- \cdot Very relevant for AGN studies
 - \cdot Synchrotron intrinsically polarised
 - \cdot Jet collimination
 - \cdot Jet launching

Polarisation in the EHT

- · Particularly challenging
- ALMA has linear feeds, most other telescopes circular

· Current solution: calculate from correlator output

- \cdot Using ALMA internal calibration
- Other antennas have various mount configurations
 - \cdot Rotating their polarised beams differently on the sky
 - \cdot Occasionally even one channel may be missing

Polarisation calibration

- $\cdot \, \text{Requires}$ unpolarised sources
- \cdot and/or source of known polarisation
- \cdot Developed method of self-polarisation calibration
 - \cdot Using polarimetric closure properties

THE ASTROPHYSICAL JOURNAL LETTERS, 910:L12 (48pp), 2021 March 20

EHT results

- Published 2y after Stokes I...
- Significantly polarised
 - Mostly azimuthal
 - With some significant evolution
- A simple model has:
 - $n_e \sim 10^{4-7} \, cm^{-3}$
 - B = 1 30 G
 - $T_e = 10^{10-11} \text{ K}$
- Polodial/Vertical organised
- MAD models favoured

Event Horizon Telescope

THE ASTROPHYSICAL JOURNAL LETTERS, 910:L13 (43pp), 2021 March 20

Figure 7. Fiducial M87 average images produced by averaging results from our five reconstruction methods (see Figure 6). Method-average images for all four M87 observation days are shown, from left to right. These images show the low-band results; for a comparison between these images and the high-band results, see Figure 28 in Appendix I. We employ here two visualization schemes (top and bottom rows) to display our four method-average images. The images are all displayed with a field of view of 120 μ as. Top row: total intensity, polarization fraction, and EVPA are plotted in the same manner as in Figure 6. Bottom row: polarization "field lines" plotted atop an underlying total intensity image. Treating the linear polarization as a vector field, the sweeping lines in the images represent streamlines of this

Even did stokes V

- Some low level circular pol detected
 - But not really imaged at 5%
- Faraday rotation of linear pol
 - Probably not a good measure of physical conditions

Many 'official' results

- 187 Papers in 6 years
 - >100 individual first authors
 - Theory, simulation, i
 - maging,
 - methodology,
 - data analysis,
 - technical development
 - other targets
 - pulsar search
 - ALMA polarisation properties

End of lecture III