Errors, Fits & MCMC - a practitioner's guide "An attempt to be practical and efficient" STATISTICS TIP: ALWAYS TRY TO GET DATA THAT'S GOOD ENOUGH THAT YOU DON'T NEED TO DO STATISTICS ON IT ### Corona-Testing #### Assume: - A Corona-test with 99% accuracy and reliability - You get a positive result - How high is the chance that you are positive? Answer: You don't know. Prior information is missing Example: 1000000 people incidence rate: 10⁻⁴ incidence rate: 10⁻² \Rightarrow 100 positive cases, 99 tested positive \Rightarrow 10000 positive cases, 9900 tested positive \Rightarrow 999900 negative cases, \Rightarrow 990000 negative cases, 989901 tested negative, 980100 tested negative, 9999 tested positive 9900 tested positive \Rightarrow p = 99/(99 + 9999) = 0.98% \Rightarrow p = 9900/(9900 + 9900) = 50% ### Bayes' theorem $$p(A|B) = \frac{p(B|A) p(A)}{p(B)}$$ #### Often interpreted as: - p(A) is our prior knowledge - new data become available (test, B) - p(A|B) is our updated knowledge ### A "danger" with (Bayesian) priors Klapdor-Kleingrothaus et al. 2001 neutrino-less double beta-decay prior: line position known .. significance of detection is around 3 σ .. Is that believable? The next generation follow-up experiment GERDA did not find any signal STATISTICS TIP: ALWAYS TRY TO GET DATA THAT'S GOOD ENOUGH THAT YOU DON'T NEED TO DO STATISTICS ON IT #### Content - Basics, error reporting, error propagation - χ^2 , Fitting - Confidence intervals, covariance matrix - Goodness of fit, Comparing fits - Difficulties - Jack-knife, Bootstrapping - MCMC - Literature ## A typical chain towards a scientific result #### Errors that occur - Statistical error: The effect of noise on the data - **Systematic error:**The effect of mis-calibration - Mistakes - Statistical errors are "straight forward", sometimes part of pipelines - a matter of propagating correctly - Systematic errors are your job: Physicist's intuition needed - knowledge outside of the current measurement needed to understand how wrong the ruler might be - It is your right and obligation to check for mistakes (i.e. obvious outliers), and select your data accordingly #### Errors of the result **Statistical error:** ### What error to report - Good practice: $R=100\pm 5|_{\rm stat}\pm 8|_{\rm sys}$ - Systematics don't necessarily average out, so report them seperately from statistical error - Like this, you say - how precise the result is (statistical error); and - how accurate the result is (systematic error) - The sampling error usually can be included in the statistical one - The model error usually is part of the systematic one ### Precision and Accuracy | www.shmula.com | | Accuracy | | |----------------|-------------|--|-------------------------------| | | | Accurate | Not Accurate | | sion | Precise | True
Value
Accurate
& Precise | Not Accurate
& Precise | | Precis | Not Precise | Accurate
& Not Precise | Not Accurate
& Not Precise | ### A little riddle on averaging $$v = (v_1 + v_2)/2$$ $$\Delta v = \sqrt{\Delta v_1^2 + \Delta v_2^2}/2$$ $$v_1 = 100 \pm 10$$ $v_2 = 100 \pm 18$ $v = 100 \pm 10.3$ #### Weighted mean! $$w_{i} = 1/\Delta v_{i}^{2}$$ $$v = \frac{\sum w_{i}v_{i}}{\sum w_{i}}$$ $$w = \sum w_{i}$$ $$\Delta v = 1/\sqrt{w}$$ $$v_1 = 100 \pm 10$$ $v_2 = 100 \pm 18$ $v = 100 \pm 8.7$ ### Averaging samples $$100 \pm 2$$ 110 | 1 The authors of paper X show a table of result numbers coming from different ways to analyse their data. The combined uncertainty should be the average uncertainty. What s or $$s/\sqrt{n}$$ - s estimates the uncertainty of a sir - if your sample is n times reading - if your sample is from splitting up _{0.6} (weighted) The authors of paper X show a table of result numbers coming from different galaxies. The combined uncertainty should be the average uncertainty divided by \sqrt{n} . $$u = \sum w_i^2$$ $$s^2 = \frac{w}{w^2 - u} \sum w_i (v_i - v)^2$$ 193.0 ± 8.1 reights the above $$\frac{1}{-1} \sum (v_i - v)^2$$ Combined $$\sqrt{\Delta v^2 + s^2}$$ $$\sqrt{\Delta v^2 + s^2/n}$$ • $$s/\sqrt{n}$$ estimates the uncertainty of the mean - if your sample is n measurements: use s/\sqrt{n} #### Gaussians & probabilities $$\int_{-s}^{s} \frac{1}{\sqrt{2\pi}\sigma} e^{-x^2/2\sigma^2} = \operatorname{erf} \frac{s}{\sqrt{2}\sigma}$$ $s = 1 \sigma$: p = 68.27% For an expected value of s=0, and an error of σ , finding s < 0.67449 σ is **less** likely than finding s > 0.67449 σ . A measurement of the type $x = 0.012 \pm 0.250$ is rather unlikely with a chance of occuring of only 3.8%. #### Error propagation $$v = v_1 + v_2$$ $$\Delta v^2 = \Delta v_1^2 + \Delta v_2^2$$ $$v = v_1 - v_2$$ $$\Delta v^2 = \Delta v_1^2 + \Delta v_2^2$$ $$v = f(v_i)$$ $$\Delta v^2 = \Sigma \left| \frac{\partial f}{\partial v_i} \right|^2 \Delta v_i^2$$ $$v = v_1 \times v_2$$ $$\left(\frac{\Delta v}{v}\right)^2 = \left(\frac{\Delta v_1}{v_1}\right)^2 + \left(\frac{\Delta v_2}{v_2}\right)^2$$ $$v = v_1/v_2$$ $$\left(\frac{\Delta v}{v}\right)^2 = \left(\frac{\Delta v_1}{v_1}\right)^2 + \left(\frac{\Delta v_2}{v_2}\right)^2$$ $$v = v_1^{\alpha} \times v_2^{\beta}$$ $$\left(\frac{\Delta v}{v}\right)^2 = \left(\alpha \frac{\Delta v_1}{v_1}\right)^2 + \left(\beta \frac{\Delta v_2}{v_2}\right)^2$$ ## The χ^2 Data: $$(x_i, y_i)$$ Model: $f(x, p_j)$ An individual data point is $$\,\sigma_i = rac{y_i - f(x_i,\,p_j)}{\Delta y_i}\,$$ away from the model. How bad is a model? - The more larger σ_i occur, the worse the model is. - The badness should be a monotonic function of $|\sigma_i|$ - All points should be treated equal - Possible choices: $\Sigma |\sigma_i|$ or $\Pi |\sigma_i|$ or $\Sigma \sigma_i^2 = \chi^2$ $$\chi^2 = \Sigma \frac{(y_i - f(x_i, p_j))^2}{\Delta y_i^2}$$ ## The χ^2 is a maximum likelihood estimator for normally distributed data Probability for a given measurement: $$p_i = e^{-\frac{1}{2} \left(\frac{y_i - f(x_i, p_j)}{\Delta y_i}\right)^2}$$ Probability for all measurements: $$L = \prod p_i$$ Maximizing L - = maximizing In L - = minimizing -ln L $$\ln L = \sum -\frac{1}{2} \left(\frac{y_i - f(x_i, p_j)}{\Delta y_i} \right)^2$$ $$\chi^2 = \Sigma \frac{(y_i - f(x_i, p_j))^2}{\Delta y_i^2}$$ $$L = e^{-\frac{1}{2}\chi^2}$$ ## Central limit theorem: Why Gaussians are so important Taylor expansion around maximum of likelyhood: $$\log \mathcal{L}(\vec{\theta}) \approx \log \mathcal{L}(\vec{\theta}_{\text{max}}) + \frac{1}{2} \left. \frac{\partial^2 \log \mathcal{L}}{\partial \theta_i \partial \theta_j} \right|_{\vec{\theta}_{\text{max}}} (\theta - \theta_{\text{max}})_i (\theta - \theta_{\text{max}})_j$$ Note: No linear terms $$\mathcal{L}(\vec{\theta}) = e^{\log \mathcal{L}(\vec{\theta})}$$ is a Gaussian - "locally enough, it behaves like that" - large N makes most distributions over a larger range roughly Gaussian ## Fitting = Asking what is least bad model .. often the language is: what is "the best fit" .. $$min|_{\{p_j\}} \chi^2(p_j)$$ Thus: N-dimensional minimization problem If you are at a minimum, you have: $$\frac{\partial \chi^2(p_j)}{\partial p_j} = 0$$ $$\frac{\partial^2 \chi^2(p_j)}{\partial p_j^2} > 0$$ #### How to find the minimum? .. in an N dimensional space .. #### Local minimization - start at some point - understand locally the landscape - estimate where to move to find smaller value - repeat, until minimum conditions are fulfilled (to a certain numerical accuracy) - Guaranteed to work - Example: Newton's method of steepest gradient - Many, many methods, trying to be efficient in the number of χ^2 evaluations needed #### Global minimization - sample parameter space globally - run local minimizations - take the best - Not guaranteed to work (!) If you want to fit, you must be able to calculate 1000's of χ^2 in reasonable time #### In case you need to do it yourself... $$\nabla_j = \frac{\chi^2(p_j + \epsilon_j) - \chi^2(p_j - \epsilon_j)}{2\epsilon_j}$$ $$^{n+1}p_j = {}^np_j - \nabla_j \times \text{step}_j$$ where the difficulty is knowing a suitable N-dimensional ϵ_j and step size #### but most likely you have a minimzer... - Even "Newton" uses also 2nd order derivatives - Quasi-Newton: be efficient by re-using already calculated $\,\chi^2\,$ - Levenberg-Marquardt: for problems which are sums of squares, the 2nd order derivative can be estimated by 1st order derivatives - Nonlinear conjugate gradient: Clever ways of the above - Principal axis methods: Not using any derivatives #### Linear models If the model f is linear in the parameters ${\bf p_j}$, $\frac{\partial \chi^2(p_j)}{\partial p_j}=0$ is a linear equation N linear equations for N parameters Matrix inversion (Simple, yet frequent and useful) example: f(x; a,b) = a + b x $$\chi^{2}(a,b) = \sum_{i=1}^{N} \left(\frac{y_{i} - a - bx_{i}}{\sigma_{i}} \right)^{2}$$ $$0 = \frac{\partial \chi^2}{\partial a} = -2 \sum_{i=1}^{N} \frac{y_i - a - bx_i}{\sigma_i^2}$$ $$0 = \frac{\partial \chi^2}{\partial b} = -2 \sum_{i=1}^{N} \frac{x_i (y_i - a - bx_i)}{\sigma_i^2}$$ $$S \equiv \sum_{i=1}^{N} \frac{1}{\sigma_i^2} \quad S_x \equiv \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \quad S_y \equiv \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2}$$ $$S_{xx} \equiv \sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2} \quad S_{xy} \equiv \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2}$$ $$aS + bS_x = S_y$$ $$aS_x + bS_{xx} = S_{xy}$$ $$U \cdot {a \choose b} = v$$ $${a \choose b} = U^{-1} \cdot v$$ $$U = \begin{pmatrix} S & S_{x} \\ S_{x} & S_{xx} \end{pmatrix}, \ v = \begin{pmatrix} S_{y} \\ S_{xy} \end{pmatrix}$$ #### Linear models, Polynomials data set: $$[(x_1, y_1 \pm \sigma_1), (x_2, y_2 \pm \sigma_2), ... (x_N, y_N \pm \sigma_N)]$$ model: $$y = a_0 + a_1 x + a_2 x^2 ... + a_m x^m = \sum_{i=0}^m a_i x^i$$ $$\left|U_{lphaeta} = \sum_{i=1}^N rac{x_i^{lpha+eta}}{\sigma_i^2}, ight| \left|v_lpha = \sum_{i=1}^N rac{y_i \, x_i^lpha}{\sigma_i^2}. ight|$$ $$v_{\alpha} = \sum_{i=1}^{N} \frac{y_i \, x_i^{\alpha}}{\sigma_i^2}.$$ where the α , β run from 0 to m The parameters and their uncertainties are then: $$a_{\alpha} = \sum_{\beta=0}^{m} \left(U^{-1} \right)_{\alpha\beta} \, v_{\beta},$$ $$\sigma_{\alpha}^2 = \left(U^{-1} \right)_{\alpha\alpha} \,,$$ note: σ_{α} are independent of y_i #### Some shortcuts • For n evenly sampled data points to which a line is fitted, for large n, the errors will be: offset: $$\frac{2}{\sqrt{n}}$$; slope: $\sqrt{\frac{12}{n^3}}$ - Need to fit a Gaussian? Take the log of your data and fit a parabola! - Since the parabola fit is a solved via a matrix inversion, no iterations are needed. - This is thus stable and fast. Well-suited for any real-time computing #### Fitting line to data with errors in x and y $$\chi^{2}(a,b) = \sum_{i=1}^{N} \frac{(y_{i} - a x_{i} - b)^{2}}{\sigma_{y,i}^{2} + a^{2} \sigma_{x,i}^{2}}$$ #### Fitting ellipse to data (without errors) (2-dim) ellipse: $$e(\vec{x};\,a,b,\vec{c},\theta)=(\vec{x}-\vec{c})\,.\,R_\theta\,.\,\begin{pmatrix}a&0\\0&b\end{pmatrix}\,.\,R_\theta^T\,.\,(\vec{x}-\vec{c})=1$$ $$\chi^2=\sum(e(\vec{x_i};\,a,b,\vec{c},\theta)-1)^2$$ #### Fitting circle to data with errors use N nuisance parameters $$\mathbf{t_i}$$: $\mathbf{x(t)} = \mathbf{r}\cos(\mathbf{t}) + \mathbf{x_0}$ $\mathbf{y(t)} = \mathbf{r}\sin(\mathbf{t}) + \mathbf{y_0}$ $$\chi^2 = \sum \frac{(x_i - x(t_i))^2}{\Delta x_i^2} + \sum \frac{(y_i - y(t_i))^2}{\Delta y_i^2} \quad \text{and minimze for (r, x_0, y_0, t_1, t_2, ...)}$$ ## Almost always, the question is not only: what are the best fit parameters, but also how well are they constrained #### How to find confidence levels? $$68.3\% = \operatorname{erf}\left(\frac{1}{\sqrt{2}}\right) = \int_{\mu-\sigma}^{\mu+\sigma} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}} dx = \int_{\mu-\sigma}^{\mu+\sigma} p(x; \mu, \sigma) dx$$ $$p(\mu; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma}$$ $$p(\mu + \sigma; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}}$$ $$L(\mu + \sigma) = L(\mu)e^{-\frac{1}{2}} \longrightarrow \chi^2|_{\sigma} = \chi_0^2 + 1$$ $$L(\mu + \sigma) = L(\mu)e^{-\frac{1}{2}} \longrightarrow \chi^2|_{\sigma} = \chi_0^2 + 1$$ "Find the value of σ such that at $\mu + \sigma$ the χ^2 is larger by 1, when re-optimizing all other parameters" | (1 | $-\alpha$) (%) | m = 1 | |-----------|-----------------|-------| | 1σ | 68.27 | 1.00 | | | 90. | 2.71 | | | 95. | 3.84 | | 2σ | 95.45 | 4.00 | | | 99. | 6.63 | | 3σ | 99.73 | 9.00 | This recipe gets impractical for larger dimensions #### For Gaussian posterior distributions: Confidence levels are N-dim ellipsoids ## More practical: Using the covariance matrix $$\chi_0^2 := \chi^2(\{p_0^j\})$$ $$M_{jk} = \frac{\partial^2 \chi^2}{\partial p^j \, \partial p^k} \, \Big|_{\{p_0^j\}}$$ $$C_{jk} = (\frac{1}{2}M_{jk})^{-1}$$ "covariance matrix" $$\Delta p^j = \sqrt{C_{jj}}$$ errors are on the diagonal #### Notes: - M_{ik} and C_{ik} are symmetric and positive definite, so one can invert them - Parameter correlations are taken into account by the process of inversion #### In case you need to do it yourself... $$M_{jj} = \frac{\chi^{2}(p_{0}^{j} + \epsilon_{j}) + \chi^{2}(p_{0}^{j} - \epsilon_{j}) - 2\chi_{0}^{2}}{\epsilon_{j}^{2}}$$ $$M_{jk} = \frac{\chi^{2}(p_{0}^{j} + \epsilon_{j} + \epsilon_{k}) - \chi^{2}(p_{0}^{j} + \epsilon_{j} - \epsilon_{k}) - \chi^{2}(p_{0}^{j} - \epsilon_{j} + \epsilon_{k}) + \chi^{2}(p_{0}^{j} - \epsilon_{j} - \epsilon_{k})}{4\epsilon_{j}\epsilon_{k}}$$ where the difficulty is knowing a suitable N-dimensional ϵ_j #### **Potential problems:** - You cannot invert because (at least) one Eigenvalue is 0 - complete parameter degeneracy - You cannot take the sqrt because (at least) one diagonal element is < 0 - you are not at a minimum, but rather a saddle point, and you can minimize further #### You anyhow want the errors? - Option 1: Use a Pseudo-Inverse - Option 2: Add positive numbers to the diagonal, until one can invert ### Eigenvalues and Eigenvectors The semi-major and –minor axes of the ellipse are the eigenvalues of the covariance matrix • The angle is $$an 2\phi = rac{C_{ij}}{C_{ii} - C_{jj}}$$ The eigenvectors give the parameters in which the problem is uncorrelated - In these parameters, the covariance matrix is diagonal - Note that the constraints are "better" in these parameters than the 1D-projected ones of the original parameters ## Not trusting the error matrix? Propagate the errors yourself! - Create M new data sets by perturbing each data point - Assume Gaussian errors on the data, and add/subtract a random Gaussian number with width of the (1 σ) error bar - Re-fit M times - Take the width of the resulting parameter distributions as errors ### What is the error on the orbital period? I have fitted semi-major axis a and mass M, and want to know the error on the period $T = 2\pi \sqrt{\frac{a^3}{GM}}$ Standard error propagation: $$\left(\frac{\Delta T}{T}\right)^2 = \frac{9}{4} \left(\frac{\Delta a}{a}\right)^2 + \frac{1}{4} \left(\frac{\Delta m}{m}\right)^2$$ Is WRONG! It misses the correlations. In general going from p_i to q_k : $$D_{kl} = \sum_{i,j} \frac{\partial q_k}{\partial p_i} \frac{\partial q_l}{\partial p_j} C_{ij}$$ n params p_i m params q_k n can be different from m $$\Delta T^{2} = \frac{\partial T}{\partial a} \frac{\partial T}{\partial a} C_{aa} + \frac{\partial T}{\partial m} \frac{\partial T}{\partial m} C_{mm}$$ $$+ \frac{\partial T}{\partial a} \frac{\partial T}{\partial m} C_{am} \frac{\partial T}{\partial m} \frac{\partial T}{\partial a} C_{ma}$$ $$= \left(\frac{\partial T}{\partial a}\right)^{2} (\Delta a)^{2} + \left(\frac{\partial T}{\partial m}\right)^{2} (\Delta m)^{2}$$ $$+ 2 \frac{\partial T}{\partial a} \frac{\partial T}{\partial m} C_{am}$$ #### Correlation coefficient With the covariance matrix, the correlation coefficient is easily calculated: $$r_{j,k} = \frac{C_{jk}}{\sigma_j \, \sigma_k}$$ The most frequent case will be that of linear fits. The above relation also holds in case one fitted a line to data with errors in both axes. #### Prediction with uncertainties - you have: best fit model + error bars - it is not sufficient to draw parameters according to the errors - Need to take into account covariance - Recipe: - Diagonalize covariance matrix - draw in the independent parameters $$r = \text{random}(0, 1) \times 2 - 1$$ $$g = \sqrt{2} \operatorname{erf}^{-1}(r)$$ - transform back to original parameters - calculate the prediction #### Error bands around the model What is the uncertainty at any given point? $$(\Delta f(x))^{2} = \left(\frac{\partial f}{\partial p_{j}}\Big|_{x}\right)^{T} \cdot C_{jj} \cdot \left(\frac{\partial f}{\partial p_{j}}\Big|_{x}\right)$$ Example: straight line, no correlation: $$f(x) = a + bx$$ $$(\Delta f(x))^2 = \sigma_a^2 + \sigma_b^2 x^2$$ Or the expensive way: - at each point x you need, predict with uncertainties, i.e. a small Monte Carlo - at each point x get the local confidence interval in f - connect these points # Is a fit good? - Define normalized residuals: $r_i = \frac{y_i f_0(x_i, p_0^{\jmath})}{\Delta y_i} \hspace{0.5cm} \chi_0^2 = \sum r_i^2$ - These r_i should be a normal distribution around 0 with width 1 "on average, each data point should be 1 σ away from the best fit" - Expect thus: $\chi^2 pprox \# \mathrm{data}$ - A bit more precisely: $\chi^2pprox\#\mathrm{data}-\#\mathrm{parameters}$ - Thus, one defines the "reduced χ^2 ": $\chi^2_r = \chi^2_0/\mathrm{d.o.f.}$ Note: The value of the reduced χ^2 in absolute terms ("it needs to be 1") is only meaningful if one can trust the error bars of the underlying data. In practice: Values between 0.1 and 10 might be fine (!) # What one ALWAYS should do: Inspect the residuals # Does the fit capture the feature in the model what you think is your signal? - maybe you have a mistake in the model? - maybe the fit did not find a proper minimum? #### **Extreme outliers?** - Could be a hint for a mistake, inspect that data point - allowed to remove #### Is there a tail of outliers? Consider outlier robust fitting # Are all points more or less described equally well / bad? Consider error rescaling # Error rescaling, or adding constant # Are all points more or less described equally well / bad? • Consider error rescaling $$\chi^2 = \Sigma \frac{(y_i - f(x_i, p_j))^2}{\Delta y_i^2}$$ #### Rescaling (1): force $\chi^2_r=1$ by multiplying all errors with $\sqrt{\chi^2_r}$ no need to fit again, all relative weights remain the same and errors scale accordingly #### Rescaling (2): force $\chi_r^2=1$ by adding an "error floor" $$\chi^{2} = \sum \frac{(y_{i} - f(x_{i}, p_{j}))^{2}}{\Delta y_{i}^{2} + c^{2}}$$ need re-fitting ## Outlier robust fitting #### Is there a tail of outliers? Consider outlier robust fitting $$r_i = \frac{y_i - f_0(x_i, p_0^j)}{\Delta y_i}$$ $$p(r) = r^2$$ $$\chi^2 = \sum p(r)$$ $$p(r, s) = r^2 \cdot s^2/(r^2 + s^2)$$ $$s \approx 5..10$$ asymptotic regime asymptotic regime ## Is a certain fit better than another? #### Don't judge before having seen the residuals! 1) Simple version: Has the χ^2_r improved significantly? What is the uncertainty on the χ^2_r ? In the sense of 1 $$\sigma$$ it is: $\Delta\chi^2_r pprox \sqrt{2/N}$ 2) Information criteria: Bayes IC, Aitken IC BIC = $$\chi^2 + \# par + ln(\# data)$$ AIC = $\chi^2 + 2\# par$ and look at Δ BIC or Δ AIC | $< 10^0$ Negative (supports M_2) 10^0 to $10^{1/2}$ Barely worth mentioning $10^{1/2}$ to 10^1 Substantial 10^1 to $10^{3/2}$ Strong $10^{3/2}$ to 10^2 Very strong $> 10^2$ Decisive | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------| | 10 ^{1/2} to 10 ¹ Substantial 10 ¹ to 10 ^{3/2} Strong 10 ^{3/2} to 10 ² Very strong | < 10 ⁰ | Negative (supports M_2) | | 10 ¹ to 10 ^{3/2} Strong 10 ^{3/2} to 10 ² Very strong | 10 ⁰ to 10 ^{1/2} | Barely worth mentioning | | 10 ^{3/2} to 10 ² Very strong | 10 ^{1/2} to 10 ¹ | Substantial | | o to its | 10 ¹ to 10 ^{3/2} | Strong | | >10 ² Decisive | 10 ^{3/2} to 10 ² | Very strong | | | > 10 ² | Decisive | # "Is the additional parameter justified?" • If model (1) is "nested" in model (2) $$\Delta \chi^2 = {}^{(1)}\chi^2 - {}^{(2)}\chi^2$$ $$f = \frac{\Delta \chi^2 / \Delta \# \text{par}}{{}^{(2)}\chi_r^2}$$ Needs CDF of F-distribution $$1 - p = \int_0^f \mathcal{F}(x; \Delta \# \text{par}, ^{(2)} \text{d.o.f.}) dx$$ The result is significant at level $$\sigma = \sqrt{2} \operatorname{erf}^{-1}(1-p)$$ - "quadratic vs. linear" - "break or straight line" - "GR" or "Newton" # "My fit is not working" - Cause #1: Bad starting values "you must know the result before" - Cause #2: Bad parametrization - Cause #2.A: Some parametrizations are more efficient than others: - example: eccentricity e, (1-e), ln (1-e) - Cause #2.B: The parameters have very different "influencing power" - Then it gets hard to minimize the weaker ones #### **Condition number C:** ratio of largest to smallest Eigenvalue of covariance matrix For inverting a matrix (which numerical minimization does at each step) the condition number should be $C \lesssim 1/\sqrt{p}$ where p is the precision For calculations with double precision, $C pprox 10^8$ starts to be problematic # Fitting independent parameters is easier ("the minimizer can change one parameter without needing to fiddle with the other") #### covariance matrix: $$\begin{pmatrix} 0.0160751 & -0.00158219 \\ -0.00158219 & 0.000158219 \end{pmatrix}$$ # Be careful when combining data - check consistency! severely underestimated errors! ### W-Boson mass Particle Physics Blog: "The question of combining information from incompatible measurements is a delicate one, residing at a boundary between statistics, psychology, and arts." # The sampling error (I) "Jackknife Test" - You have fitted N data points. - Form N subsets of data with N 1 points by leaving out one data point at a time - Fit each subset and take the sample of best fit parameters p_i⁽⁻ⁱ⁾ Needs N times fitting (not so bad), historically first resampling method # The sampling error (II) "Bootstrapping" - You have fitted N data points. - Form M >> N sets of data with N points by randomly drawing with replacement from your N data points - repetition of data allowed (and wanted), ~1/e points will be duplicates - Fit all M sets and take the sample of best fit parameters p_i⁽⁻ⁱ⁾ - Their distribution can be used the estimate $^{ m boot}\Delta p_j$ - Needs around M = 10⁴ times fitting, computationally demanding but easy to parallelize ## Markov-Chain Monte Carlo #### Sampling the parameter space "You walk through the parameter space and remember all points visited", i.e. you build a chain of points #### **Basic (Metropolis-Hastings) algorithm:** - You are at p₁ - Calculate $\chi^2(p_1)$ - Take a random step to p₂ • Calculate $\chi^2(p_2)$ - Better work in independent variables - Found by diagonizing covariance matrix - if $\chi^2(p_2) < \chi^2(p_1)$ your next start point is p_2 - if $\chi^2(p_2) > \chi^2(p_1)$ draw a random variable 0 < r < 1 (uniformly) if $r < e^{(\chi_1^2 - \chi_2^2)/2}$ your next start point is p₂, otherwise p₁ ## MCMC in practice - many variants, for example several "walkers" - this can be parallelized, a chain not - In the beginning, such a chain will move towards minimum - either start already at minimum (if interested in errors) - or throw away "burn-in" phase burn-in 500 450 $-\log \mathcal{L}$ 400 π 350 0 -300 - 10^{3} 10^{4} 10^{5} 10^{6} 10^{2} 10^{3} 10^{4} 10^{5} 10^{2} 10^{0} 10^{1} 10^{1} 10^{6} step step You need around 10 $^{\text{5}}$ evaluations of χ^2 # Do not confuse starting values and priors - **Starting values**: Initial estimates. The MCMC should be independent of these, one cuts away the initial "burnin phase". - **Priors**: Additional information that should be taken into account in addition to what the new data tell - Using priors means, the result will be a mixture of these priors and the new information (Bayes theorem) - One is allowed to "play" with the starting values, one is not allowed to "play" with the priors - Flat priors with hard boundaries are sometimes used to limit the fit range. Make sure not to introduce a bias on the result ## MCMC – some considerations - MCMC is useful to get to know the structure of the parameter space - is it well-behaved? - multiple minima? - MCMC yields error estimates from the widths of the parameter distribution - for well-behaved, Gaussian problems it much less efficient than the error matrix - MCMC is inefficient for finding the minimum ("not a fit") - but can be crucial to show that the minimum found is the global one # MCMC – nested sampling # Error propagation with MCMC is simple - You don't need to know the derivatives of the transformation q <-> p - Only needed: transformation function q(p) - Your chain with N samples is {p_i}_N - Calculate q_k (p_i) for each of the N samples - Your posterior is simply {q_k}_N - So the standard error on q_k is stddev $\{q_k\}_N$ # If you want to ... N data points, M parameters - Find a minimum with a fit: - Calculate error matrix: - Run a MCMC chain - Do a jack-knife - Do a bootstrap # computing demand parallel? $10^{3..4} \chi^2$ evaluations (no) M x (M-1) χ^2 eval. (no) $10^{5..6} \chi^2$ evaluations yes N fits, N x $10^{3..4} \chi^2$ yes 10^4 fits, i.e. $10^{7..8} \chi^2$ yes