Errors, Fits & MCMC - a practitioner's guide

"An attempt to be practical and efficient"

STATISTICS TIP: ALWAYS TRY TO GET DATA THAT'S GOOD ENOUGH THAT YOU DON'T NEED TO DO STATISTICS ON IT

Corona-Testing

Assume:

- A Corona-test with 99% accuracy and reliability
- You get a positive result
- How high is the chance that you are positive?

Answer: You don't know. Prior information is missing

Example: 1000000 people

incidence rate: 10⁻⁴ incidence rate: 10⁻²

 \Rightarrow 100 positive cases, 99 tested positive \Rightarrow 10000 positive cases, 9900 tested positive

 \Rightarrow 999900 negative cases, \Rightarrow 990000 negative cases, 989901 tested negative, 980100 tested negative, 9999 tested positive 9900 tested positive

 \Rightarrow p = 99/(99 + 9999) = 0.98% \Rightarrow p = 9900/(9900 + 9900) = 50%

Bayes' theorem

$$p(A|B) = \frac{p(B|A) p(A)}{p(B)}$$

Often interpreted as:

- p(A) is our prior knowledge
- new data become available (test, B)
- p(A|B) is our updated knowledge

A "danger" with (Bayesian) priors

Klapdor-Kleingrothaus et al. 2001

neutrino-less double beta-decay

prior: line position known

.. significance of detection is around 3 σ ..

Is that believable?

The next generation follow-up experiment GERDA did not find any signal

STATISTICS TIP: ALWAYS TRY TO GET DATA THAT'S GOOD ENOUGH THAT YOU DON'T NEED TO DO STATISTICS ON IT

Content

- Basics, error reporting, error propagation
- χ^2 , Fitting
- Confidence intervals, covariance matrix
- Goodness of fit, Comparing fits
- Difficulties
- Jack-knife, Bootstrapping
- MCMC
- Literature

A typical chain towards a scientific result

Errors that occur

- Statistical error:
 The effect of noise on the data
- **Systematic error:**The effect of mis-calibration
- Mistakes
- Statistical errors are "straight forward", sometimes part of pipelines
 - a matter of propagating correctly
- Systematic errors are your job: Physicist's intuition needed
 - knowledge outside of the current measurement needed to understand how wrong the ruler might be
- It is your right and obligation to check for mistakes (i.e. obvious outliers), and select your data accordingly

Errors of the result

Statistical error:

What error to report

- Good practice: $R=100\pm 5|_{\rm stat}\pm 8|_{\rm sys}$
 - Systematics don't necessarily average out, so report them seperately from statistical error
 - Like this, you say
 - how precise the result is (statistical error); and
 - how accurate the result is (systematic error)
 - The sampling error usually can be included in the statistical one
 - The model error usually is part of the systematic one

Precision and Accuracy

www.shmula.com		Accuracy	
		Accurate	Not Accurate
sion	Precise	True Value Accurate & Precise	Not Accurate & Precise
Precis	Not Precise	Accurate & Not Precise	Not Accurate & Not Precise

A little riddle on averaging

$$v = (v_1 + v_2)/2$$
$$\Delta v = \sqrt{\Delta v_1^2 + \Delta v_2^2}/2$$

$$v_1 = 100 \pm 10$$

 $v_2 = 100 \pm 18$ $v = 100 \pm 10.3$

Weighted mean!

$$w_{i} = 1/\Delta v_{i}^{2}$$

$$v = \frac{\sum w_{i}v_{i}}{\sum w_{i}}$$

$$w = \sum w_{i}$$

$$\Delta v = 1/\sqrt{w}$$

$$v_1 = 100 \pm 10$$

 $v_2 = 100 \pm 18$ $v = 100 \pm 8.7$

Averaging samples

$$100 \pm 2$$

110 | 1

The authors of paper X show a table of result numbers coming from different ways to analyse their data.

The combined uncertainty should be the average uncertainty.

What

s or
$$s/\sqrt{n}$$

- s estimates the uncertainty of a sir
 - if your sample is n times reading
 - if your sample is from splitting up

_{0.6} (weighted)

The authors of paper X show a table of result numbers coming from different galaxies.

The combined uncertainty should be the average uncertainty divided by \sqrt{n} .

$$u = \sum w_i^2$$
$$s^2 = \frac{w}{w^2 - u} \sum w_i (v_i - v)^2$$

193.0 ± 8.1

reights the above

$$\frac{1}{-1} \sum (v_i - v)^2$$

Combined

$$\sqrt{\Delta v^2 + s^2}$$

$$\sqrt{\Delta v^2 + s^2/n}$$

•
$$s/\sqrt{n}$$
 estimates the uncertainty of the mean

- if your sample is n measurements: use s/\sqrt{n}

Gaussians & probabilities

$$\int_{-s}^{s} \frac{1}{\sqrt{2\pi}\sigma} e^{-x^2/2\sigma^2} = \operatorname{erf} \frac{s}{\sqrt{2}\sigma}$$

 $s = 1 \sigma$: p = 68.27%

For an expected value of s=0, and an error of σ , finding s < 0.67449 σ is **less** likely than finding s > 0.67449 σ .

A measurement of the type

 $x = 0.012 \pm 0.250$ is rather unlikely with a chance of occuring of only 3.8%.

Error propagation

$$v = v_1 + v_2$$
$$\Delta v^2 = \Delta v_1^2 + \Delta v_2^2$$

$$v = v_1 - v_2$$
$$\Delta v^2 = \Delta v_1^2 + \Delta v_2^2$$

$$v = f(v_i)$$

$$\Delta v^2 = \Sigma \left| \frac{\partial f}{\partial v_i} \right|^2 \Delta v_i^2$$

$$v = v_1 \times v_2$$

$$\left(\frac{\Delta v}{v}\right)^2 = \left(\frac{\Delta v_1}{v_1}\right)^2 + \left(\frac{\Delta v_2}{v_2}\right)^2$$

$$v = v_1/v_2$$

$$\left(\frac{\Delta v}{v}\right)^2 = \left(\frac{\Delta v_1}{v_1}\right)^2 + \left(\frac{\Delta v_2}{v_2}\right)^2$$

$$v = v_1^{\alpha} \times v_2^{\beta}$$

$$\left(\frac{\Delta v}{v}\right)^2 = \left(\alpha \frac{\Delta v_1}{v_1}\right)^2 + \left(\beta \frac{\Delta v_2}{v_2}\right)^2$$

The χ^2

Data:
$$(x_i, y_i)$$
 Model: $f(x, p_j)$

An individual data point is
$$\,\sigma_i = rac{y_i - f(x_i,\,p_j)}{\Delta y_i}\,$$
 away from the model.

How bad is a model?

- The more larger σ_i occur, the worse the model is.
- The badness should be a monotonic function of $|\sigma_i|$
- All points should be treated equal
- Possible choices: $\Sigma |\sigma_i|$ or $\Pi |\sigma_i|$ or $\Sigma \sigma_i^2 = \chi^2$

$$\chi^2 = \Sigma \frac{(y_i - f(x_i, p_j))^2}{\Delta y_i^2}$$

The χ^2 is a maximum likelihood estimator for normally distributed data

Probability for a given measurement:

$$p_i = e^{-\frac{1}{2} \left(\frac{y_i - f(x_i, p_j)}{\Delta y_i}\right)^2}$$

Probability for all measurements:

$$L = \prod p_i$$

Maximizing L

- = maximizing In L
- = minimizing -ln L

$$\ln L = \sum -\frac{1}{2} \left(\frac{y_i - f(x_i, p_j)}{\Delta y_i} \right)^2$$

$$\chi^2 = \Sigma \frac{(y_i - f(x_i, p_j))^2}{\Delta y_i^2}$$

$$L = e^{-\frac{1}{2}\chi^2}$$

Central limit theorem: Why Gaussians are so important

Taylor expansion around maximum of likelyhood:

$$\log \mathcal{L}(\vec{\theta}) \approx \log \mathcal{L}(\vec{\theta}_{\text{max}}) + \frac{1}{2} \left. \frac{\partial^2 \log \mathcal{L}}{\partial \theta_i \partial \theta_j} \right|_{\vec{\theta}_{\text{max}}} (\theta - \theta_{\text{max}})_i (\theta - \theta_{\text{max}})_j$$

Note: No linear terms

$$\mathcal{L}(\vec{\theta}) = e^{\log \mathcal{L}(\vec{\theta})}$$
 is a Gaussian

- "locally enough, it behaves like that"
- large N makes most distributions over a larger range roughly Gaussian

Fitting = Asking what is least bad model

.. often the language is: what is "the best fit" ..

$$min|_{\{p_j\}} \chi^2(p_j)$$

Thus: N-dimensional minimization problem

If you are at a minimum, you have:

$$\frac{\partial \chi^2(p_j)}{\partial p_j} = 0$$

$$\frac{\partial^2 \chi^2(p_j)}{\partial p_j^2} > 0$$

How to find the minimum?

.. in an N dimensional space ..

Local minimization

- start at some point
- understand locally the landscape
- estimate where to move to find smaller value
- repeat, until minimum conditions are fulfilled (to a certain numerical accuracy)
- Guaranteed to work
- Example: Newton's method of steepest gradient
- Many, many methods, trying to be efficient in the number of χ^2 evaluations needed

Global minimization

- sample parameter space globally
- run local minimizations
- take the best
- Not guaranteed to work (!)

If you want to fit, you must be able to calculate 1000's of χ^2 in reasonable time

In case you need to do it yourself...

$$\nabla_j = \frac{\chi^2(p_j + \epsilon_j) - \chi^2(p_j - \epsilon_j)}{2\epsilon_j}$$

$$^{n+1}p_j = {}^np_j - \nabla_j \times \text{step}_j$$

where the difficulty is knowing a suitable N-dimensional ϵ_j and step size

but most likely you have a minimzer...

- Even "Newton" uses also 2nd order derivatives
- Quasi-Newton: be efficient by re-using already calculated $\,\chi^2\,$
- Levenberg-Marquardt: for problems which are sums of squares, the 2nd order derivative can be estimated by 1st order derivatives
- Nonlinear conjugate gradient: Clever ways of the above
- Principal axis methods: Not using any derivatives

Linear models

If the model f is linear in the parameters ${\bf p_j}$, $\frac{\partial \chi^2(p_j)}{\partial p_j}=0$ is a linear equation

N linear equations for N parameters

Matrix inversion

(Simple, yet frequent and useful) example: f(x; a,b) = a + b x

$$\chi^{2}(a,b) = \sum_{i=1}^{N} \left(\frac{y_{i} - a - bx_{i}}{\sigma_{i}} \right)^{2}$$

$$0 = \frac{\partial \chi^2}{\partial a} = -2 \sum_{i=1}^{N} \frac{y_i - a - bx_i}{\sigma_i^2}$$
$$0 = \frac{\partial \chi^2}{\partial b} = -2 \sum_{i=1}^{N} \frac{x_i (y_i - a - bx_i)}{\sigma_i^2}$$

$$S \equiv \sum_{i=1}^{N} \frac{1}{\sigma_i^2} \quad S_x \equiv \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \quad S_y \equiv \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2}$$

$$S_{xx} \equiv \sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2} \quad S_{xy} \equiv \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2}$$

$$aS + bS_x = S_y$$

$$aS_x + bS_{xx} = S_{xy}$$

$$U \cdot {a \choose b} = v$$

$${a \choose b} = U^{-1} \cdot v$$

$$U = \begin{pmatrix} S & S_{x} \\ S_{x} & S_{xx} \end{pmatrix}, \ v = \begin{pmatrix} S_{y} \\ S_{xy} \end{pmatrix}$$

Linear models, Polynomials

data set:
$$[(x_1, y_1 \pm \sigma_1), (x_2, y_2 \pm \sigma_2), ... (x_N, y_N \pm \sigma_N)]$$

model:
$$y = a_0 + a_1 x + a_2 x^2 ... + a_m x^m = \sum_{i=0}^m a_i x^i$$

$$\left|U_{lphaeta} = \sum_{i=1}^N rac{x_i^{lpha+eta}}{\sigma_i^2},
ight| \left|v_lpha = \sum_{i=1}^N rac{y_i \, x_i^lpha}{\sigma_i^2}.
ight|$$

$$v_{\alpha} = \sum_{i=1}^{N} \frac{y_i \, x_i^{\alpha}}{\sigma_i^2}.$$

where the α , β run from 0 to m

The parameters and their uncertainties are then:

$$a_{\alpha} = \sum_{\beta=0}^{m} \left(U^{-1} \right)_{\alpha\beta} \, v_{\beta},$$

$$\sigma_{\alpha}^2 = \left(U^{-1} \right)_{\alpha\alpha} \,,$$

note: σ_{α} are independent of y_i

Some shortcuts

• For n evenly sampled data points to which a line is fitted, for large n, the errors will be:

offset:
$$\frac{2}{\sqrt{n}}$$
; slope: $\sqrt{\frac{12}{n^3}}$

- Need to fit a Gaussian?
 Take the log of your data and fit a parabola!
 - Since the parabola fit is a solved via a matrix inversion, no iterations are needed.
 - This is thus stable and fast. Well-suited for any real-time computing

Fitting line to data with errors in x and y

$$\chi^{2}(a,b) = \sum_{i=1}^{N} \frac{(y_{i} - a x_{i} - b)^{2}}{\sigma_{y,i}^{2} + a^{2} \sigma_{x,i}^{2}}$$

Fitting ellipse to data (without errors)

(2-dim) ellipse:
$$e(\vec{x};\,a,b,\vec{c},\theta)=(\vec{x}-\vec{c})\,.\,R_\theta\,.\,\begin{pmatrix}a&0\\0&b\end{pmatrix}\,.\,R_\theta^T\,.\,(\vec{x}-\vec{c})=1$$

$$\chi^2=\sum(e(\vec{x_i};\,a,b,\vec{c},\theta)-1)^2$$

Fitting circle to data with errors

use N nuisance parameters
$$\mathbf{t_i}$$
: $\mathbf{x(t)} = \mathbf{r}\cos(\mathbf{t}) + \mathbf{x_0}$ $\mathbf{y(t)} = \mathbf{r}\sin(\mathbf{t}) + \mathbf{y_0}$
$$\chi^2 = \sum \frac{(x_i - x(t_i))^2}{\Delta x_i^2} + \sum \frac{(y_i - y(t_i))^2}{\Delta y_i^2} \quad \text{and minimze for (r, x_0, y_0, t_1, t_2, ...)}$$

Almost always, the question is not only:

 what are the best fit parameters, but also

how well are they constrained

How to find confidence levels?

$$68.3\% = \operatorname{erf}\left(\frac{1}{\sqrt{2}}\right) = \int_{\mu-\sigma}^{\mu+\sigma} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}} dx = \int_{\mu-\sigma}^{\mu+\sigma} p(x; \mu, \sigma) dx$$

$$p(\mu; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma}$$

$$p(\mu + \sigma; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}}$$

$$L(\mu + \sigma) = L(\mu)e^{-\frac{1}{2}} \longrightarrow \chi^2|_{\sigma} = \chi_0^2 + 1$$

$$L(\mu + \sigma) = L(\mu)e^{-\frac{1}{2}} \longrightarrow \chi^2|_{\sigma} = \chi_0^2 + 1$$

"Find the value of σ such that at $\mu + \sigma$ the χ^2 is larger by 1, when re-optimizing all other parameters"

(1	$-\alpha$) (%)	m = 1
1σ	68.27	1.00
	90.	2.71
	95.	3.84
2σ	95.45	4.00
	99.	6.63
3σ	99.73	9.00

This recipe gets impractical for larger dimensions

For Gaussian posterior distributions: Confidence levels are N-dim ellipsoids

More practical: Using the covariance matrix

$$\chi_0^2 := \chi^2(\{p_0^j\})$$

$$M_{jk} = \frac{\partial^2 \chi^2}{\partial p^j \, \partial p^k} \, \Big|_{\{p_0^j\}}$$

$$C_{jk} = (\frac{1}{2}M_{jk})^{-1}$$

"covariance matrix"

$$\Delta p^j = \sqrt{C_{jj}}$$

errors are on the diagonal

Notes:

- M_{ik} and C_{ik} are symmetric and positive definite, so one can invert them
- Parameter correlations are taken into account by the process of inversion

In case you need to do it yourself...

$$M_{jj} = \frac{\chi^{2}(p_{0}^{j} + \epsilon_{j}) + \chi^{2}(p_{0}^{j} - \epsilon_{j}) - 2\chi_{0}^{2}}{\epsilon_{j}^{2}}$$

$$M_{jk} = \frac{\chi^{2}(p_{0}^{j} + \epsilon_{j} + \epsilon_{k}) - \chi^{2}(p_{0}^{j} + \epsilon_{j} - \epsilon_{k}) - \chi^{2}(p_{0}^{j} - \epsilon_{j} + \epsilon_{k}) + \chi^{2}(p_{0}^{j} - \epsilon_{j} - \epsilon_{k})}{4\epsilon_{j}\epsilon_{k}}$$

where the difficulty is knowing a suitable N-dimensional ϵ_j

Potential problems:

- You cannot invert because (at least) one Eigenvalue is 0
 - complete parameter degeneracy
- You cannot take the sqrt because (at least) one diagonal element is < 0
 - you are not at a minimum, but rather a saddle point, and you can minimize further

You anyhow want the errors?

- Option 1: Use a Pseudo-Inverse
- Option 2: Add positive numbers to the diagonal, until one can invert

Eigenvalues and Eigenvectors

 The semi-major and –minor axes of the ellipse are the eigenvalues of the covariance matrix

• The angle is
$$an 2\phi = rac{C_{ij}}{C_{ii} - C_{jj}}$$

 The eigenvectors give the parameters in which the problem is uncorrelated

- In these parameters, the covariance matrix is diagonal
- Note that the constraints are "better" in these parameters than the 1D-projected ones of the original parameters

Not trusting the error matrix? Propagate the errors yourself!

- Create M new data sets by perturbing each data point
- Assume Gaussian errors on the data, and add/subtract a random Gaussian number with width of the (1 σ) error bar
- Re-fit M times
- Take the width of the resulting parameter distributions as errors

What is the error on the orbital period?

 I have fitted semi-major axis a and mass M, and want to know the error on the period

 $T = 2\pi \sqrt{\frac{a^3}{GM}}$

Standard error propagation:

$$\left(\frac{\Delta T}{T}\right)^2 = \frac{9}{4} \left(\frac{\Delta a}{a}\right)^2 + \frac{1}{4} \left(\frac{\Delta m}{m}\right)^2$$

Is WRONG! It misses the correlations.

In general going from p_i to q_k :

$$D_{kl} = \sum_{i,j} \frac{\partial q_k}{\partial p_i} \frac{\partial q_l}{\partial p_j} C_{ij}$$

n params p_i
m params q_k
n can be different from m

$$\Delta T^{2} = \frac{\partial T}{\partial a} \frac{\partial T}{\partial a} C_{aa} + \frac{\partial T}{\partial m} \frac{\partial T}{\partial m} C_{mm}$$

$$+ \frac{\partial T}{\partial a} \frac{\partial T}{\partial m} C_{am} \frac{\partial T}{\partial m} \frac{\partial T}{\partial a} C_{ma}$$

$$= \left(\frac{\partial T}{\partial a}\right)^{2} (\Delta a)^{2} + \left(\frac{\partial T}{\partial m}\right)^{2} (\Delta m)^{2}$$

$$+ 2 \frac{\partial T}{\partial a} \frac{\partial T}{\partial m} C_{am}$$

Correlation coefficient

With the covariance matrix, the correlation coefficient is easily calculated:

$$r_{j,k} = \frac{C_{jk}}{\sigma_j \, \sigma_k}$$

The most frequent case will be that of linear fits.

The above relation also holds in case one fitted a line to data with errors in both axes.

Prediction with uncertainties

- you have: best fit model + error bars
- it is not sufficient to draw parameters according to the errors
- Need to take into account covariance
- Recipe:
 - Diagonalize covariance matrix
 - draw in the independent parameters

$$r = \text{random}(0, 1) \times 2 - 1$$

$$g = \sqrt{2} \operatorname{erf}^{-1}(r)$$

- transform back to original parameters
- calculate the prediction

Error bands around the model

What is the uncertainty at any given point?

$$(\Delta f(x))^{2} = \left(\frac{\partial f}{\partial p_{j}}\Big|_{x}\right)^{T} \cdot C_{jj} \cdot \left(\frac{\partial f}{\partial p_{j}}\Big|_{x}\right)$$

Example: straight line, no correlation:

$$f(x) = a + bx$$
$$(\Delta f(x))^2 = \sigma_a^2 + \sigma_b^2 x^2$$

Or the expensive way:

- at each point x you need, predict with uncertainties, i.e. a small Monte Carlo
- at each point x get the local confidence interval in f
- connect these points

Is a fit good?

- Define normalized residuals: $r_i = \frac{y_i f_0(x_i, p_0^{\jmath})}{\Delta y_i} \hspace{0.5cm} \chi_0^2 = \sum r_i^2$
- These r_i should be a normal distribution around 0 with width 1 "on average, each data point should be 1 σ away from the best fit"
- Expect thus: $\chi^2 pprox \# \mathrm{data}$
- A bit more precisely: $\chi^2pprox\#\mathrm{data}-\#\mathrm{parameters}$
- Thus, one defines the "reduced χ^2 ": $\chi^2_r = \chi^2_0/\mathrm{d.o.f.}$

Note: The value of the reduced χ^2 in absolute terms ("it needs to be 1") is only meaningful if one can trust the error bars of the underlying data.

In practice: Values between 0.1 and 10 might be fine (!)

What one ALWAYS should do: Inspect the residuals

Does the fit capture the feature in the model what you think is your signal?

- maybe you have a mistake in the model?
- maybe the fit did not find a proper minimum?

Extreme outliers?

- Could be a hint for a mistake, inspect that data point
- allowed to remove

Is there a tail of outliers?

Consider outlier robust fitting

Are all points more or less described equally well / bad?

Consider error rescaling

Error rescaling, or adding constant

Are all points more or less described equally well / bad?

• Consider error rescaling

$$\chi^2 = \Sigma \frac{(y_i - f(x_i, p_j))^2}{\Delta y_i^2}$$

Rescaling (1):

force $\chi^2_r=1$ by multiplying all errors with $\sqrt{\chi^2_r}$

no need to fit again, all relative weights remain the same and errors scale accordingly

Rescaling (2):

force $\chi_r^2=1$ by adding an "error floor"

$$\chi^{2} = \sum \frac{(y_{i} - f(x_{i}, p_{j}))^{2}}{\Delta y_{i}^{2} + c^{2}}$$

need re-fitting

Outlier robust fitting

Is there a tail of outliers?

Consider outlier robust fitting

$$r_i = \frac{y_i - f_0(x_i, p_0^j)}{\Delta y_i}$$

$$p(r) = r^2$$

$$\chi^2 = \sum p(r)$$

$$p(r, s) = r^2 \cdot s^2/(r^2 + s^2)$$

$$s \approx 5..10$$

asymptotic regime

asymptotic regime

Is a certain fit better than another?

Don't judge before having seen the residuals!

1) Simple version: Has the χ^2_r improved significantly?

What is the uncertainty on the χ^2_r ?

In the sense of 1
$$\sigma$$
 it is: $\Delta\chi^2_r pprox \sqrt{2/N}$

2) Information criteria: Bayes IC, Aitken IC

BIC =
$$\chi^2 + \# par + ln(\# data)$$

AIC = $\chi^2 + 2\# par$

and look at Δ BIC or Δ AIC

$< 10^0$ Negative (supports M_2) 10^0 to $10^{1/2}$ Barely worth mentioning $10^{1/2}$ to 10^1 Substantial 10^1 to $10^{3/2}$ Strong $10^{3/2}$ to 10^2 Very strong $> 10^2$ Decisive		
10 ^{1/2} to 10 ¹ Substantial 10 ¹ to 10 ^{3/2} Strong 10 ^{3/2} to 10 ² Very strong	< 10 ⁰	Negative (supports M_2)
10 ¹ to 10 ^{3/2} Strong 10 ^{3/2} to 10 ² Very strong	10 ⁰ to 10 ^{1/2}	Barely worth mentioning
10 ^{3/2} to 10 ² Very strong	10 ^{1/2} to 10 ¹	Substantial
o to its	10 ¹ to 10 ^{3/2}	Strong
>10 ² Decisive	10 ^{3/2} to 10 ²	Very strong
	> 10 ²	Decisive

"Is the additional parameter justified?"

• If model (1) is "nested" in model (2)

$$\Delta \chi^2 = {}^{(1)}\chi^2 - {}^{(2)}\chi^2$$
$$f = \frac{\Delta \chi^2 / \Delta \# \text{par}}{{}^{(2)}\chi_r^2}$$

Needs CDF of F-distribution

$$1 - p = \int_0^f \mathcal{F}(x; \Delta \# \text{par}, ^{(2)} \text{d.o.f.}) dx$$

The result is significant at level

$$\sigma = \sqrt{2} \operatorname{erf}^{-1}(1-p)$$

- "quadratic vs. linear"
- "break or straight line"
- "GR" or "Newton"

"My fit is not working"

- Cause #1: Bad starting values
 "you must know the result before"
- Cause #2: Bad parametrization
- Cause #2.A: Some parametrizations are more efficient than others:
 - example: eccentricity e, (1-e), ln (1-e)
- Cause #2.B: The parameters have very different "influencing power"
 - Then it gets hard to minimize the weaker ones

Condition number C:

ratio of largest to smallest Eigenvalue of covariance matrix

For inverting a matrix (which numerical minimization does at each step) the condition number should be $C \lesssim 1/\sqrt{p}$ where p is the precision

For calculations with double precision, $C pprox 10^8$ starts to be problematic

Fitting independent parameters is easier

("the minimizer can change one parameter without needing to fiddle with the other")

covariance matrix:

$$\begin{pmatrix} 0.0160751 & -0.00158219 \\ -0.00158219 & 0.000158219 \end{pmatrix}$$

Be careful when combining data - check consistency!

severely underestimated errors!

W-Boson mass

Particle Physics Blog: "The question of combining information from incompatible measurements is a delicate one, residing at a boundary between statistics, psychology, and arts."

The sampling error (I) "Jackknife Test"

- You have fitted N data points.
- Form N subsets of data with N 1 points
 by leaving out one data point at a time
- Fit each subset and take the sample of best fit parameters p_i⁽⁻ⁱ⁾

Needs N times fitting (not so bad), historically first resampling method

The sampling error (II) "Bootstrapping"

- You have fitted N data points.
- Form M >> N sets of data with N points
 by randomly drawing with replacement from your N data points
- repetition of data allowed (and wanted), ~1/e points will be duplicates
- Fit all M sets and take the sample of best fit parameters p_i⁽⁻ⁱ⁾
- Their distribution can be used the estimate $^{
 m boot}\Delta p_j$
- Needs around M = 10⁴ times fitting, computationally demanding
 but easy to parallelize

Markov-Chain Monte Carlo

Sampling the parameter space

"You walk through the parameter space and remember all points visited", i.e. you build a chain of points

Basic (Metropolis-Hastings) algorithm:

- You are at p₁
- Calculate $\chi^2(p_1)$
- Take a random step to p₂

• Calculate $\chi^2(p_2)$

- Better work in independent variables
- Found by diagonizing covariance matrix
- if $\chi^2(p_2) < \chi^2(p_1)$ your next start point is p_2
- if $\chi^2(p_2) > \chi^2(p_1)$ draw a random variable 0 < r < 1 (uniformly)

if $r < e^{(\chi_1^2 - \chi_2^2)/2}$ your next start point is p₂, otherwise p₁

MCMC in practice

- many variants, for example several "walkers"
 - this can be parallelized, a chain not
- In the beginning, such a chain will move towards minimum
 - either start already at minimum (if interested in errors)

- or throw away "burn-in" phase burn-in 500 450 $-\log \mathcal{L}$ 400 π 350 0 -300 - 10^{3} 10^{4} 10^{5} 10^{6} 10^{2} 10^{3} 10^{4} 10^{5} 10^{2} 10^{0} 10^{1} 10^{1} 10^{6} step step You need around 10 $^{\text{5}}$ evaluations of χ^2

Do not confuse starting values and priors

- **Starting values**: Initial estimates. The MCMC should be independent of these, one cuts away the initial "burnin phase".
- **Priors**: Additional information that should be taken into account in addition to what the new data tell
- Using priors means, the result will be a mixture of these priors and the new information (Bayes theorem)
- One is allowed to "play" with the starting values, one is not allowed to "play" with the priors
- Flat priors with hard boundaries are sometimes used to limit the fit range. Make sure not to introduce a bias on the result

MCMC – some considerations

- MCMC is useful to get to know the structure of the parameter space
 - is it well-behaved?
 - multiple minima?
- MCMC yields error estimates from the widths of the parameter distribution
 - for well-behaved, Gaussian problems it much less efficient than the error matrix
- MCMC is inefficient for finding the minimum ("not a fit")
 - but can be crucial to show that the minimum found is the global one

MCMC – nested sampling

Error propagation with MCMC is simple

- You don't need to know the derivatives of the transformation q <-> p
- Only needed: transformation function q(p)
- Your chain with N samples is {p_i}_N
- Calculate q_k (p_i) for each of the N samples
- Your posterior is simply {q_k}_N
- So the standard error on q_k is stddev $\{q_k\}_N$

If you want to ...

N data points, M parameters

- Find a minimum with a fit:
- Calculate error matrix:
- Run a MCMC chain
- Do a jack-knife
- Do a bootstrap

computing demand parallel? $10^{3..4} \chi^2$ evaluations (no) M x (M-1) χ^2 eval. (no) $10^{5..6} \chi^2$ evaluations yes N fits, N x $10^{3..4} \chi^2$ yes 10^4 fits, i.e. $10^{7..8} \chi^2$ yes