Errors, Fits & MCMC
- a practitioner's guide

“An attempt to be practical and efficient”
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Corona-Testing

Assume:

* A Corona-test with 99% accuracy and reliability
* You get a positive result

 How high is the chance that you are positive?

Answer: You don’t know. Prior information is missing

Example: 1000000 people

incidence rate: 10 incidence rate: 1072
—> 100 positive cases, 99 tested positive —> 10000 positive cases, 9900 tested positive
= 999900 negative cases, —> 990000 negative cases,

989901 tested negative, 980100 tested negative,

9999 tested positive 9900 tested positive

= p=99/(99 +9999) = 0.98% = p =9900/(9900 + 9900) = 50%



Bayes’ theorem

p(B|A)p(A)
p(B)

p(A|B) =

0.99 104

| |

p(test pos|act pos) p(act pos)

t test —
p(act pos|test pos) - (tost pos)

(9999 + 99)/10°

Often interpreted as:

* p(A)is our prior knowledge
 new data become available (test, B)
* p(A|B)is our updated knowledge



A “danger” with (Bayesian) priors

counts
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Klapdor-Kleingrothaus et al. 2001

STATISTICS TiP: ALWAYS TRY TO GET
DATA THAT'S GOOD ENOUGH THAT YOU
DONT NEED TO DO STATISTICS ON IT

neutrino-less double beta-decay
prior: line position known

.. significance of detection
isaround 3 o ..

Is that believable?

The next generation follow-up
experiment GERDA did not find
any signal
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Errors that occur

e Statistical error:
The effect of noise on the data

e Systematic error:

val | Measured
The effect of mis-calibration

values

/1\

e Mistakes

 Statistical errors are “straight forward”, sometimes part of pipelines
e a matter of propagating correctly

» Systematic errors are your job: Physicist’s intuition needed
* knowledge outside of the current measurement needed to
understand how wrong the ruler might be

* Itis your right and obligation to check for mistakes (i.e. obvious outliers),
and select your data accordingly



Errors of the result

Measured
parameters

~
_—

e —

T~

Statistical error:
The effect of noise on the data

Systematic error:
The effect of mis-calibration

Sampling error:
The result might depend on what of
your data you use

Model error:
Your model most likely is a
simplified version of reality



What error to report

» Good practice: R = 100 % 5|gpat T+ 8lsys

e Systematics don’t necessarily average out, so report
them seperately from statistical error

* Like this, you say
- how precise the result is (statistical error); and
- how accurate the result is (systematic error)

* The sampling error usually can be included in the
statistical one

* The model error usually is part of the systematic one



Precision and Accuracy
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A little riddle on averaging

v = (v1 +v2)/2 =
(1 2)/ v, =100+ 10 mms) v=100%10.3
v, =100 + 18
Av:\/AU%‘FAU%/Z

Weighted mean !

_ 2w v, =100 £ 10
V= S, vi=100i18 mm=) v=100+8.7
W = 2W;

Av =1/y/w



Averaging samples

100 + 2 , w

The authors of paper X show a
table of result numbers coming XeK4
from different ways to analyse

their data.

(weighted)

The authors of paper X show a
The combined uncertainty table of result numbers coming
should be the average from different galaxies. E(”Uz' — U)z
uncertainty.

The combined uncertainty
should be the average Combined
uncertainty divided by Vn.

s estimates the uncertainty of a si

- if your sample is n times reading VAV2 + §2
- if your sample is from splitting uy
. 5/4/n estimates the uncertainty of the mean VAV + 52 /n

- if your sample is n measurements: use s/+/n



Gaussians & probabilities

° 1
—p2 2 S
e~ [20° _ orf
_s \V2mo V20
.3 () K=
p(x) = e p(x)= 2= ¢

erfc(z) erf(z) = 1 —erfe(2)

,‘ ‘/r) s=10:p=6827%

For an expected value of s=0, and an error of o,
finding s < 0.67449 o is less likely than finding s > 0.67449 ¢.

A measurement of the type
x =0.012 + 0.250 is rather unlikely with a chance of occuring of only 3.8%.



Error propagation

v = f(vy)
2
Av: =3 of Av?
c%?;




The X~

Data: (ZIZZ', y@) Model: f(x,pj)
An individual data pointis 0; = S ];( » pj) away from the model.
Yi

How bad is a model?

* The more larger 0; occur, the worse the model is.

* The badness should be a monotonic function of ]J@-]
* All points should be treated equal

* Possible choices: Z‘gi‘or H‘Oi‘ or 20'7;2 — X2

(yi — f (24, pj))°
Ay?

X' =X



The X’is a maximum likelihood
estimator for normally distributed data

1 (vi—f(z5,05)\2

Probability for a given measurement: Pi — €

Probability for all measurements: L =11p;

Maximizing L

2
= maximizing In L Inl, = Z = ( A(%aPJ))
. Ui

= minimizing —In L

X2 _ 2(% — f(@s, pj))2




Central limit theorem:
Why Gaussians are so important

Taylor expansion around maximum of likelyhood:

o > 1 0%log L
1 ~ ] —

omax
Note: No linear terms

—

L(0) = e°s£®) ig a4 Gaussian

* "locally enough, it behaves like that”
* large N makes most distributions over a larger range roughly Gaussian



Fitting =
Asking what is least bad model

.. often the language is: what is “the best fit” ..
- 2
min|(,.y X~ (Pj)
Thus: N-dimensional minimization problem

If you are at a minimum, you have:

Ox*(p;) | max:
— O 0'5f . 2 ]
3]?]' | saddle: 7 <0

> () _ae. min:
ap? 0.5

O’x*(p)) N \\




How to find the minimum?

..inan N dimensional space ..

Local minimization Global minimization
» start at some point * sample parameter space
 understand locally the globally
landscape * run local minimizations
* estimate where to move to * take the best

find smaller value

* repeat, until minimum
conditions are fulfilled
(to a certain numerical
accuracy)

e Guaranteed to work

* Example: Newton’s method of
steepest gradient

* Many, many methods, trying
to be efficient in the number
of y? evaluations needed

 Not guaranteed to work (!)

0.8 1.0 1.2 1.4 1.6

If you want to fit, you must be able to calculate 1000’s of X2 in reasonable time



In case you need to do it yourself...

X°(p; +¢) — xX*(pj — €;)
2€j

V, =

n+1pj — npj — Vj X Stepj

where the difficulty is knowing a suitable N-dimensional €5 and step size

but most likely you have a minimzer...

* Even “Newton” uses also 2nd order derivatives )

* Quasi-Newton: be efficient by re-using already calculated X

* Levenberg-Marquardt: for problems which are sums of squares, the 2nd order
derivative can be estimated by 1st order derivatives

* Nonlinear conjugate gradient: Clever ways of the above

* Principal axis methods: Not using any derivatives



Linear models

x> (p;)
8pj

If the model f is linear in the parameters p;, = 0 is alinear equation

mmm) N linear equations for N parameters
mmm)  Matrix inversion

(Simple, yet frequent and useful) example: f(x; a,b)=a+bx

____zzyz—a—bx,,
i —a—ba:z)

.S'Eiv:i S Eﬁ:ﬁ S Ei&
i = S = asS +bSz = Sy a a -1
W S bS — S —|U.(b)—vH(b)—U .U
szzﬁ Sxy:z -2 z zz = Oy

v=(5. 5o)v=1(2)



Linear models, Polynomials

data set: [ (X1, Yi£ 01), (X, Yot 03), ... (X, YnE ON) ]

model: =ap+a; X+a, x2..+a. . x"=Y" a xt
0 1 2 m 1=0™"1

N N
U =) o2 Vo= o2
i=1 l i=1 ¢

where the a, f run from 0 to m

The parameters and their uncertainties are then:

o =) U as 8| |0a=(U"")00
B=0

note: g, are independent of y,




Some shortcuts

* For n evenly sampled data points to which a line is fitted, for large n,
the errors will be:

2 : slope: 12
\/T_l’ p *

offset: 2
n

* Need to fit a Gaussian?
Take the log of your data and fit a parabola!

Since the parabola fit is a solved via a matrix inversion, no iterations
are needed.
This is thus stable and fast. Well-suited for any real-time computing



Fitting line to data with errorsin x and y

i (y; —ax; —b)

i=1 Y

2

Fitting ellipse to data (without errors)

(2-dim) ellipse:  e(Z; a,b,¢,0) = (¥ —C). Ry . (g 2) R, (-0 =1

X2 — Z(e(x_:m a, bva 9) o 1)2

Fitting circle to data with errors

use N nuisance parameters t;: X(t) = r cos(t) + xq
y(t) = rsin(t) + vy,

i — x(t; 2 i — Yt °
XZ _ Z (:U Aig )) + Z (y AZ(Q )) and minimze for (r, Xy, Yo, t1 ty, ... )



Almost always,
the question is not only:

 what are the best fit
parameters, but also

* how well are they
constrained



How to find confidence levels?

(7 1 pto 1 1 (z—p)? pto
68.3% =erf | — | = / e 2 o2 dx :/ x; W, o)dr
i (\/§> p—0c 2mo p—o p( g )

1 —
p(ps; p,0) =
2mo . 1
1 F Lpto)=Lwet = X lo = X0 +
p(“"’a :uv )_\/% e 2
— “Find the value of o such that

at u + o the y?is larger by 1,
when re-optimizing all

- (%) | m=1 other parameters”
15 68.27 [100]
90). 2.71 3327.0 Note:
95. 3.84
20 95.45 4.00 s )
00, 6 63 ) NOT the reduced y

30 99.73 9.00 o
3326.0 And re-optimizing all other

parameters is crucial

This recipe gets impractical for e

larger dimensions




For Gaussian posterior distributions:
Confidence levels are N-dim ellipsoids

Ax? =2.3

//\) ——Ax* =1

// (_// //
/ /’
| - (1-a) (%) m=1 m=2 m=3

1
\\
I - 1o 68.27 [1.00 | | 230 3.53

90. 2.71 4.61 6.25
95. 3.84 5.99 7.82
20 95.45 4.00 6.18 8.03

/\ 99. 6.63 9.21 11.34
30 99.73 9.00 11.83 14.16

/ 68.3% \




More practical:
Jsing the covariance matrix

X2 = x*({m})

82X2
Mik = 57 opF l#h)
O — 1 M)l “covariance matrix”
it = (5 Mjk)
Apj = ij errors are on the diagonal
Notes:

* My and G are symmetric and positive definite, so one can invert them
* Parameter correlations are taken into account by the process of inversion



In case you need to do it yourself...

X2(ph 4+ €5) + X2 () — ¢5) — 2x3

M.. —
J 2
. . Ej
Mjy, = X (o + € +ew) =X+ —e) = X3P — € +e) + X — €5 — ex)
=
4e ey,

where the difficulty is knowing a suitable N-dimensional €

Potential problems:
* You cannot invert because (at least) one Eigenvalue is O
mm) complete parameter degeneracy
* You cannot take the sqrt because (at least) one diagonal elementis <0
mm=) yOu are not at a minimum, but rather a saddle point, and you can
minimize further

You anyhow want the errors?
e Option 1: Use a Pseudo-Inverse
e Option 2: Add positive numbers to the diagonal, until one can invert



Eigenvalues and Eigenvectors

5

error/in p,

A

error

in p,

v

P1

The semi-major and —minor axes
of the ellipse are the eigenvalues
of the covariance matrix

Cii — Cjj

The angle is tan2¢ =

The eigenvectors give the
parameters in which the problem
is uncorrelated

In these parameters, the
covariance matrix is diagonal

Note that the constraints are
“better” in these parameters
than the 1D-projected ones of
the original parameters



Not trusting the error matrix?
Propagate the errors yourself!

* Create M new data sets by perturbing each data
point

 Assume Gaussian errors on the data, and
add/subtract a random Gaussian number with
width of the (1 o) error bar

e Re-fit M times

* Take the width of the resulting parameter
distributions as errors



What is the error on the orbital period?

* | have fitted semi-major axis a and mass M, and
want to know the error on the period

e Standard error propagation:
(-4
T 4\ a
* |s WRONG! It misses the correlations.

oT T oT oT

In general going from p; to q,: AT? :%%C’aa + 8—m8—mcmm
Z Iqx 3611 + 6_T@_T0am8_T6_TCma
Ip; apj da Om om Oa
= <8T>2 (Aa)® + <8T>2 (Am)?
n params p; da om
m params qy oT OT

. 2——Cum,
n can be different from m + da Om



Correlation coefficient

With the covariance matrix, the correlation coefficient is easily calculated:
Cj

040k

Tk =

The most frequent case will be that of linear fits.

The above relation also holds in case one fitted a line to data with errors in both axes.



Prediction with uncertainties

you have: best fit model + error bars

it is not sufficient to draw parameters
according to the errors

Need to take into account covariance

Recipe:
- Diagonalize covariance matrix
- draw in the independent parameters

r =random(0,1) x 2 — 1
g=V2erf 1 (r)

- transform back to original parameters
- calculate the prediction

Y [mas]

S2 position predicted

118.669} . '
118.669}
118.669}
118.668}

118.668}

from errors only
incl. covariance matrix

33.3702

33.3704 33.3706 33.3708 33.3710
X [mas]




Error bands around the model
What is the uncertainty at any given point?

- (] o ()

Example: straight line, no correlation:

vvvvvvvvvvvvvvvvvvvv

flx)=a+bx
(Af(2)) = os + 0} 27 I

Or the expensive way:

» at each point x you need,
predict with uncertainties,
i.e. a small Monte Carlo OF o .

e ateach point x get the local
confidence interval in f
e connect these points



s a fit good?

Yi — fo(:vq;,p%) Y2 = Zrzz
Ay;

* These r; should be a normal distribution around 0 with width 1
“on average, each data point should be 1 0 away from the best fit”

* Define normalized residuals: r, =

* Expect thus: X2 ~ # data
* A bit more precisely: X2 ~ # data — # parameters

2 2
* Thus, one defines the “reduced X2 “ X?” — XO/dOf

2 . {o“: ”
Note: The value of the reduced X in absolute terms (“it needs to be 1”)
is only meaningful if one can trust the error bars of the underlying data.

In practice: Values between 0.1 and 10 might be fine (!)



What one ALWAYS should do:
Inspect the residuals

Does the fit capture the feature in the model 2501

what you think is your signal?
* maybe you have a mistake in the model?
* maybe the fit did not find a proper minimum?

N

o

o
o

150}

100}

resiauals v sr [Km/s|

N
o
o

Extreme outliers? :
* Could be a hint for a mistake, of 4

inspect that data point 2013 2014 2015 2016 2017 2018 2019 2020
* allowed to remove tvrl

Is there a tail of outliers?
* Consider outlier robust fitting

Are all points more or less
described equally well / bad?
e Consider error rescaling



Error rescaling, or adding constant

Are all points more or less — (1 pi))2
described equally well / bad? X2 =Y i — I ;’ b )
e Consider error rescaling Ayi

Rescaling (1): Rescaling (2):

force X72~ =1 force X% =1

by multiplying all errors by adding an “error floor”

with v/ x?2 )
=3 (i — f(@ips))

no need to fit again, all Ay? + c?
relative weights remain
the same and errors scale need re-fitting

accordingly



Is there a tail of outliers?

O U tl | er ro b U St f|tt| N g  Consider outlier robust fitting

narrow

n .~ central peak

)

least squares fit

tail of ol
outliers
/ \robust straight-line fit
-----

—;O 1IO 2IO 3IO
quadratic
regime

asymptotic asymptotic
regime regime



|s a certain fit better than another?

Don’t judge before having seen the residuals!
1) Simple version: Has the X; improved significantly?

What is the uncertainty on the x> ?

In the sense of 1o it is: AX% ~ 2/N

2) Information criteria: Bayes IC, Aitken IC

BIC = x* + #par + In(#data)
AIC p— X2 —+ 2#1)81‘ <100 Negative (supports Mo)

10° to 1012 | Barely worth mentioning

102 to 101 Substantial
and look at A BIC or A AIC 101 to 1032 Strong
1032 to 102 Very strong

> 102 Decisive



”|s the additional parameter justified?”

e “guadratic vs. linear”
* “break or straight line”
* “GR” or “Newton”

* If model (1) is "nested” in model (2)

A2 = (1)X2 B (2)X2

e Needs CDF of F-distribution

f
1—p= / F(z; A#par, P d.of.)dx
0

* The result is significant at level

c=+vV2ef '(1-p)



“My fit is not working”

e Cause #1: Bad starting values
“you must know the result before”

e Cause #2: Bad parametrization

e Cause #2.A: Some parametrizations are more efficient than others:
- example: eccentricity e, (1-e), In (1-e)

 Cause #2.B: The parameters have very different “influencing power”
- Then it gets hard to minimize the weaker ones

Condition number C:
ratio of largest to smallest Eigenvalue of covariance matrix

For inverting a matrix (which numerical minimization does at each step)
the condition number should be C' < 1/,/p where p is the precision

For calculations with double precision, (' ~ 108 starts to be problematic



-itting independent parameters
IS easler

(“the minimizer can change one parameter without needing to fiddle with the other”)

20 —m—m—m———m——— 77T
1.5F

1.0}

0.5F

a+b (x-10)
0o 0 ] ool v v v
0 2 4 6 8 10 12 0 2 4 6 8 10 12
covariance matrix:
0.0160751 -0.00158219 0.000253151 0

-0.00158219 0.000158219 0 0.000158219



Be careful when combining data
- check consistency!

X’s
20 FE L 20F :
15} ] 1510
10} ] 10L
200 M N N ‘ |
Table 4

Best-fit Black Hole and Orbital Parameters as Derived from the Fit of SO-2 Alone, S0-38 Alone, and the Simultaneous Fit of SO-2 and S0-38

Best-fit Parameter Values from Orbital Fits®

Model Parameter (units) S0-2 Only S0-38 Only S0-2 and S0-38
Black Hole Properties:
Distance (kpc) 8.02 £ 0.36 £ 0.04 (6.5, 9.5] 7.86 + 0.14 + 0.04
Mass (10° M.) 4.12 £ 031 + 0.04 [2.5, 5.5 4.02 + 0.16 + 0.04
15+ \
10+
00 0.1 02 03 04 05 0.8 St
Qm
0t
this looks good 51
_‘]0,1 ————————————— ]

-10 -5 0 5 10 15 20

severely underestimated errors!



W-Boson mass

my [GeV]

o . Naive combination:

mW = 80.410(7) GeV

LHCb L

ATLAS ° is nonsense. None of the
measured values is in
DO ° the 68% error band

LeP ® Proposed solution:
rescale all errors until
Standard Mode Experiment (S=2.1) 2 .
my = 80.361(6) GeV my, = 80.410(15) GeV X’r’ IS 1-

80.30 80.32 80.34 80.36 80.38 80.40 8042 80.44

Particle Physics Blog:  “The question of combining information from incompatible measurements
is a delicate one, residing at a boundary between statistics, psychology, and arts.”



(i

The sampling error (l)

Jackknife Test”

You have fitted N data points.

Form N subsets of data with N — 1 points
by leaving out one data point at a time

Fit each subset and take the sample of best fit parameters p;)

jac N —1 —1
: kAp? - TN Z(Pi )—po,j)2

Needs N times fitting (not so bad), historically first resampling method



The sampling error (Il)
“Bootstrapping”

You have fitted N data points.

e Form M >> N sets of data with N points
by randomly drawing with replacement from your N data points

* repetition of data allowed (and wanted), ~1/e points will be duplicates
* Fit all M sets and take the sample of best fit parameters pj(")
* Their distribution can be used the estimate bOOtApj

* Needs around M = 10* times fitting, computationally demanding
- but easy to parallelize



Markov-Chain Monte Carlo

Sampling the parameter space

“You walk through the parameter space and remember all points visited”,
i.e. you build a chain of points

Basic (Metropolis-Hastings) algorithm:
* You are at p;

. 2
Calculate x“(p1) * Better work in independent

variables
* Take a random step to p, ——) + Found by diagonizing

e Calculate X°(p2) covariance matrix

o if X2(p2) < b (p1) your next start point is p,

o jf XQ(pz) > X2(p1) draw a random variable 0 < r < 1 (uniformly)

2 2
it < eX17X2)/2 your next start point is p,, otherwise p;



MCMC In practice

III

* many variants, for example several “walkers”
- this can be parallelized, a chain not

* In the beginning, such a chain will move towards minimum
- either start already at minimum (if interested in errors)
- or throw away “burn-in” phase

| burn-in
5 ‘ 500 -
4_
450 -
3-
Q
21 & 400
|
1_
350 -
0-
-1 300 -

step 2 step
* You need around 10° evaluations of X



Do not contuse
starting values and priors

 Starting values: Initial estimates. The MCMC should be
independent of these, one cuts away the initial “burn-
in phase”.

* Priors: Additional information that should be taken into
account in addition to what the new data tell

* Using priors means, the result will be a mixture of these
priors and the new information (Bayes theorem)

* One is allowed to “play” with the starting values, one
is not allowed to “play” with the priors

* Flat priors with hard boundaries are sometimes used to
limit the fit range. Make sure not to introduce a bias on
the result



MCMC — some considerations

e MCMC is useful to get to know the structure of the parameter space

- is it well-behaved?
- multiple minima?

* MCMCyields error estimates from the widths of the parameter distribution
- for well-behaved, Gaussian problems it much less efficient than the error matrix

« MCMC is inefficient for finding the minimum (“not a fit”)
- but can be crucial to show that the minimum found is the global one



MCMC — nested sampling
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Schwarzschild-precession paper

(MCMC figure from paper)
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Example:

Schwarzschild-precession paper

(error matrix ellipsoid)

JoloRclelele
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Error propagation with MCMC is
simple

* You don’t need to know the derivatives of the

transformation g <->p 9
Dy = . Cij
— i OPj

* Only needed: b3
transformation function q(p)

* Your chain with N samples is {p;}5

* Calculate gy (p;) for each of the N samples
* Your posterior is simply {q,}y

* So the standard error on gy is stddev {q,}y



* Find a minimum with a fit:

If you want to ...

N data points, M parameters

e Calculate error matrix:

Run @ MCMC chain
Do a jack-knife

Do a bootstrap

computing demand parallel?

103 -4 x“evaluations (no)
M x (M-1) X eval. (no)
105-6 X”evaluations yes
N fits, N x 1034 X~ yes
10% fits, i.e. 107 -8 X% vyes



