

EACULTÉ DES SCIENCES

Molecular atmospheric uncertainties and

characterisation at CTAO

Yorgos Voutsinas for the Calibration pipeline development team, and CTAO systematics study team AtmoHEAD 2024, Ischia, 17/07/2024

Introduction

Atmosphere is the medium with which γ-rays interact and Cherenkov light is produced and propagates

- ➢ **Atmospheric molecular density**
	- \rightarrow Longitudinal shower development, height of first interaction, intensity of Cherenkov light
- ➢ **Refractive index profile**
	- \rightarrow Cherenkov light production threshold, emission angle
- ➢ **Light transmission**
	- \geq Extinction = absorption + scattering
	- ➢ Molecular extinction
		- \triangleright Rayleigh scattering + absorption (mainly O₃)
	- ➢ Aerosol extinction
		- ➢ Clouds, aerosols

Objective

Ongoing effort to estimate CTAO systematic uncertainties budget

- ➢ Atmosphere affects energy estimation, flux estimation, and source localization
- \geq CTAO has set stringent requirements for systematic uncertainties, e.g. for energy estimation:

$$
(\frac{\delta E_{scale}(E)}{E}\!=\!10\,\%) \!\sim\! (\frac{\delta E_{atmosphere}(E)}{E}\!=\!8\,\%) \oplus (\frac{\delta E_{telescopic\ part}(E)}{E}\!=\!5\,\%) \oplus (\frac{\delta E_{analysis}(E)}{E}\!=\!4\,\%)
$$

 \geq Significant improvement wrt current IACTs (\sim 15% under optimal conditions)

Objective: understand and reduce systematic uncertainties related to the molecular atmosphere

- \rightarrow Atmospheric monitoring & characterisation
	- \triangleright Molecular atmosphere calibration suite

Shower development & Cherenkov light creation

Observations from past studies* have shown

- \ge Cherenkov light density on the ground can vary up to 60% for atmospheric models of different geographical latitudes.
- ➢ Seasonal variations of mid-latitude models show differences in the range of 5-15%.

These variations highlight the need for detailed molecular atmosphere characterization

*

K. Bernlöhr Astroparticle Physics 12 (2000) 255–268 P. Munar-Adrover and M. Gaug, European Physical Journal Web of Conferences. Vol. 197. European Physical Journal Web of Conferences. Sept. 2019, p. 01002 M. K. Daniel. "Application of radiosonde data to VERITAS simulations"

Molecular atmosphere characterisation pipeline

First implementation of the molecular atmosphere characterisation suite

- \rightarrow It calculates the astronomical dusk and dawn \rightarrow timeseries to be requested
- \rightarrow It requests & retrieves the timeseries of meteorological data from Data assimilation Systems (DAS)
- \rightarrow Analyses the meteorological data & produces a profile describing the atmosphere state for the given night

2 modes of operation

The Calibration Pipeline can produce a contemporary model describing the atmosphere over the observatory for any given night that contains all the required information in order to launch Corsika simulation

 \triangleright Production of tailored IRFs for a given observation

The Calibration Pipeline can select a seasonal model best matching the conditions over the observatory for a given night

- \ge The selection is based on the molecular number density at an altitude of 15 km a.s.l.
	- \geq Selection of the best matching set of pre-calculated IRFs

Molecular atmosphere calibration input data

DAS reanalysis / analysis datasets

- \triangleright DAS provide datasets over a grid covering Earth, at various pressure levels for each grid point. Datasets are updated every (few) hours
- \triangleright Dataset become publicly available with some latency

GDAS ds083.2, available from Research Data Archive

 γ Few hours latency, 120km x 120km grid, update every 6 hours, ceiling \sim 26 km a.s.l. rather unstable interface

ECMWF ERA-5, available from Copernicus (EU program)

 \rightarrow 5 days latency, 31km x 31km grid, update every hour, ceiling ~45km a.s.l., stable interface

Available grid from Copernicus

Seasonal profiles uncertainties

Variations of molecular density at 15km a.s.l. during 8 years in La Palma. The data comes from the analysis of ERA5 dataset of ECMWF, available through Copernicus. We can see 3 seasons.

An uncertainty of ~5% has been estimated for the North in previous studies if no molecular atmosphere calibration is applied.

 \rightarrow It can be reduced to \sim 3% with the use of seasonal models.

Ongoing studies

- \geq Season definition & uncertainty budget estimation for the South site
- \geq Refinement of the uncertainty budget for the North site using latest years data retrieved from the more precise ERA-5 dataset

Tailored profiles uncertainties

Tailored profiles should provide smaller uncertainties than seasonal ones, but:

- \rightarrow How can we estimate the uncertainties of the data assimilation systems?
	- λ According to their documentation, uncertainties either are not publicly available (GDAS-RDA) or shouldn't be taken at face value (ECMWF)

An estimation of the systematics introduced by nightly profiles can be made by looking at the hourly variation

- \rightarrow It includes both DAS uncertainty $+$ diurnal variations
	- \rightarrow Both constitute systematic error for nightly profiles

Data assimilation systems validation

Data assimilation systems provide the atmospheric parameters on grid points over the globe

- \geq Can we be sure that propagating the atmospheric state to the observatory site does not introduce biases?
	- \triangleright Will be translated into IRF biases
- \geq Especially when the measurement sites are far from the observatory sites
	- \rightarrow South site: the closest radiosonde station is at the sea coast

Ground validation with the weather station

Even better, validation with a radiosonde campaign performed on site

Cherenkov light transmission: extinction mechanisms

Light extinction in atmosphere

Slow component: Molecular extinction

Rayleigh scattering

➢ Produced by Calibration pipeline via the analysis of DAS data

Molecular absorption

- ➢ Mainly ozone
- \rightarrow If calibration needed
	- ➢ DAS data
- ➢ If not
	- ➢ Average profiles created with some radiative transfer code

Fast component: aerosols/clouds

Rapidly varying (timescale of minutes)

Will be tackled using input of LIDAR & FRAM and historical climatological data

Cherenkov light transmission calibration

The Calibration pipeline will continuously monitoring the extinction processes

- ➢ Aerosols and clouds will be monitored via observatory elements (LIDARs & FRAMs)
- ➢ Molecular extinction via DAS (ECMWF & GDAS)?

The final calibration product will be an extinction hypercube

- \rightarrow Represents optical depth evolution as a function of time, wavelength, altitude, and pointing
- \rightarrow The fast component of the extinction hypercube will be updated during an observation block

Here we focus on the molecular extinction

Rayleigh scattering

The dominant light extinction process in a clear night

- \triangleright Preliminary studies of a first version of seasonal profiles for La Palma
- \rightarrow The difference in the Cherenkov light density reaching the ground is within 1 %
- \geq Simulation studies using more elaborate seasonal profiles have been planned

12

Ozone study: motivations

Will the use of an average ozone profile, produced with a radiative transfer code, satisfy CTAO requirements?

➢ There are several processes (seasonal variation, stratosphere to troposphere transport, horizontal transport of anthropogenic ozone)

Scope of the study

- 1) See if we indeed need ozone monitoring & calibration
- 2) If yes, with what frequency (daily, seasonal)
- 3) Produce software tools & workflows towards that end

But first let's see the variations of ozone mixing ratio at various pressure levels

- \geq ECMWF ERA-5 dataset, available through Copernicus, 5 years (2018-2022), over the South site
- \triangleright First analysis performed at the Climate Data Store (CDS) servers, using [Toolbox](https://cds.climate.copernicus.eu/cdsapp#!/toolbox)

Ozone mixing ratios per pressure level (South)

Nightly mean & std of ozone MR in Atacama @650hPa

time

Nightly mean & std of ozone MR in Atacama @ 900hPa

Nightly mean & std of ozone MR in Atacama @ 600hPa

 2020

time

2022

160n

 $140n$

120_n ratio

100_n

80_n

60_n

 $40n$ 2018

 \overline{a}

(mol

mixing r

mass i

Ozone

 $0[-1]$ [mo] $airo$ ē **Dzone**

Nightly mean & std of ozone MR in Atacama @ 800hPa

Nightly mean & std of ozone MR in Atacama @ 700hPa

Nightly mean & std of ozone MR in Atacama @ 250hPa

Ozone mixing ratios per pressure level (South)

Nightly mean & std of ozone MR in Atacama @175hPa

Nightly mean & std of ozone MR in Atacama @ 50hPa

Nightly mean & std of ozone MR in Atacama @150hPa

Nightly mean & std of ozone MR in Atacama @ 3hPa

time

Nightly mean & std of ozone MR in Atacama @ 125hPa

Nightly mean & std of ozone MR in Atacama @ 1hPa

Production of ozone absorption profile

Ozone absorption per wavelength per height bin, in a format compatible with the CTAO simulation tools (sim_telarray)

- **1) ozone_MR** (mol/mol) * **atmospheric_density** (g/cm³) * **N_A** (particle x mol⁻¹) / **MolarMassOzone** (kg.mol)) → **ozone number density (**particle/m³**)**
- **2) a(H, λ) = ozone number density (**particle/m³**) * Cross section (**m² /particle**)**

The cross section was retrieved from V. Gorshelev et al, AMT, 7, 609–624, 2014

3) Integrate a(λ) for various altitudes in order to obtain optical depth (OD)

We have all we need to run simulations in order to estimate the effect of ozone

 \triangleright As a first approximation we will use the testeff program, provided as a part of the sim telarray package

Extreme events

Transport of ozone masses from the Stratosphere to the Troposphere (STT)

- \geq STT example happened 4th 5th of June 2020, over the South site
- \rightarrow \sim 2 days duration, ozone seems to reside few hours to each pressure level
- ➢ Recorded both by GDAS & ECMWF

On going studies

- \angle Effect of STT events on the light density on the ground & the IRFs
- ➢ How frequently such events are occuring?
- ➢ Correlations with other phenomena?

Seasonal variations and extreme events

Example: preliminary results, only ozone extinction, comparison between a day in June and a day in May

- \rightarrow Differences within 1-2% have been observed
- ➢ A conclusive study on the need for ozone calibration requires the comparison in (energy bias, effective area) between an average ozone profile and various extreme (but natural) ozone profiles
- \geq Decide whether to disentangle (or not) from Rayleigh Scattering and average aerosol extinction profiles for each site

Nitrogen oxides

NOx molecules also absorb in the spectrum range of interest

We focus on NO₂

- ➢ Larger mixing ratio wrt NO
- ➢ Absorption cross section available in HITRAN

Analysis of 4 months of data over La Palma (Sep-Dec 2023)

➢ Copernicus Atmospheric Monitoring Service (CAMS) global reanalysis (EAC4)

Motivations for the study

- γ Time variability of NO₂ mixing ratio
	- \rightarrow Lightnings, pollution from aircrafts
- \geq Light density on the ground, with/without NO₂ absorption
	- \angle Definition of calibration strategy

Conclusion

The first version of the molecular atmosphere calibration has been developed

Calibration software that assess the effect of absorbing molecules has been developed

 \rightarrow Preliminary results of their impact and their variations are presented here

Next Steps

➢ **Shower development & light creation**

- 1) Revisit uncertainty budget estimation for the CTAO north site using ERA-5 datasets; studies for the south site are in planning.
- 2) Validation of DAS datasets with dedicated radiosonde campaigns & surface data from weather stations
- 3) Discuss an approach to estimate the systematic uncertainty budget for tailored simulations

➢ **Molecular extinction**

- 1) Include temperature dependence of absorption cross sections.
- 2) Conduct simulations to refine systematic uncertainty budget and define a detailed calibration strategy.